
Durability
Durability is one of the four key ACID attributes required to ensure the accurate and
reliable operation of a transactional database. Simply put, durability ensures that any
transaction that succeeds is committed to the database and made persistent. Even in
the event of a power failure or other unexpected occurrence, transactions that have been
committed survive permanently. In reverse, any transactions that fail or are interrupted
will “roll back” and not affect database integrity.

As simple as the concept of durability sounds, its impact on client applications is
tremendous. Durability relieves the application developer from having to account for and
handle the myriad situations that could negatively impact database consistency. Durability
lets the application developer focus on workflow while the database ensures the accuracy
and consistency of the data despite external forces.

Durability in VoltDB

Support for durability in VoltDB begins with its transactional model. Stored procedures are
transactions in VoltDB and each stored procedure invocation succeeds or fails as a whole.
You write VoltDB stored procedures as Java classes, which allow you to include both SQL
queries and additional programming logic within the transaction itself.

Once the transaction succeeds and the changes are committed to the database, VoltDB
provides several features that ensure the changes become durable. If the database server
stops for any reason, the contents are preserved and can be restored to a consistent state.
Which feature you use depends on the level of durability you require:

•	 Database Snapshots provide basic durability. Snapshots are exactly what they
sound like: disk-based copies of the database contents at a moment in time. You
can initiate snapshots manually. For ongoing persistence, however, it is better
to enable automatic snapshots when starting the database. You configure how
frequently snapshots are taken (usually in terms of minutes or hours) as part
of the deployment settings. If the server fails for any reason, you can use the
snapshots to recover the database to its last known state on restart.

•	 Asynchronous Command Logging provides enhanced durability by creating both
snapshots and a log of all transactions between snapshots. With command logs, if
the server fails and the database is then restarted, not only can VoltDB recover the
last snapshot, but it can also replay all subsequent transactions in the log. Use of
command logs can reduce the number of transactions lost from possibly several

209 Burlington Road, Suite 203
B, MA 01730

Phone: +1.978.528.4660
Fax: +1.978.528.0568

http://voltdb.com

minutes’ worth — when using snapshots alone
— to a fraction of a second’s worth when using
both. Only those transactions not written to the
log as the server fails are not captured. The level
of durability is, again, configurable when enabling
asynchronous command logging.

•	 Synchronous Command Logging provides the most
complete durability possible. Like asynchronous
command logging, synchronous logging captures
the individual transactions between snapshots.
But with synchronous logging, the log is written
after the transaction completes and before it is
committed to the database. In other words, no
transactions are committed that are not logged and
no transactions are lost. The only drawback is that
more advanced disk technology is required to keep
up with VoltDB’s high transaction throughput rate.

VoltDB provides durability options to meet any and all
application requirements and budgets, from the simplest
incremental snapshots to complete durability, up to the
very last transaction committed. Combined with VoltDB’s
high availability capabilities, these features provide
complete persistence and reliability for your data.

