YOLTDB

Guide to Performance and
Customization

Abstract

This book explains how to optimize application performance and customize database
features using VoltDB.

V8.1

Guide to Performance and Customization

V8.1
Copyright © 2008-2018 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro,
which are distributed by VoltDB, Inc. under acommercial license. Y our rights to access and use VoltDB features described herein are defined by
the license you received when you acquired the software.

VoltDB is atrademark of VoltDB, Inc.

VoltDB softwareis protected by U.S. Patent Nos. 9,600,514 and 9,639,571. Other patents pending.

This document was generated on May 26, 2018.

http://www.gnu.org/licenses/

Table of Contents

PrE AR ..t e viii
1. Organization of thiS ManUaliiiiiiiiiii e viii

2. OthEr RESOUITES ... cieiti ettt ettt ettt ettt ettt e e et et e e et et e e et et e e e eera e eeees viii

O | gL oo (8 1o o R PO PRSPPI 1
1.1. What ATfects PerfOrManCe?iiiiiiiiieiiii ettt 1

1.2, HOW 10 USE ThiS BOOKciiitiieiiiiiie ettt e e 1

2. HEllo, WOrTA! REVISITEAouitiiiiiii e e et e e e e e e e e e e eneenns 3
2.1. Optimizing your Application for VOIIDBviiiiiiiiieiiiieecei e 3

2.2. Applying Hello World to a Practical Problem ..o 3

2.3. Partitioned vs. Replicated TableSiiiiiiiiiiii e 4
2.3.1. Defining the Partitioning COIUMNcoouiiiiiiiiii e 4

2.3.2. Creating the Stored ProCEAUNESiviiiiiieiiii e 5

2.4. Using Asynchronous Stored Procedure CallSoouuuiiiiiiiiiiiiiiiiecei e 6
2.4.1. Understanding Asynchronous Programimingoveeveuinneeiiiinneeeeiineeeeeninn 7

2.4.2. The Callback ProCEAUIEcoiiiiiiiiiiii et 8

2.4.3. Making an Asynchronous Procedure Callcooveiiiiiiiiiiiiiniei e 9

2.5. CoNNECEING 10 8l SEIVEISvuiiieii et 9

2.6. PULtiNG it All TOGEINEN «...eeiiie e 10

2.7 NEXE SEEPIS ..ottt 12

3. Understanding VOItDB EXECULION PLaNSiiiiiiiiieiiiii et 13
3.1. How VoltDB Selects Execution Plans for Individual SQL Statements.............cccoceeeneeennn. 13

3.2. Understanding VOItDB EXECULiON PlansSc..uieiiiiiiieiiiiieecci e 13

3.3. Reading the Execution Plan and Optimizing Your SQL Statementscoeveevvnneeeennnn. 14
3.3.1. Evaluating the Use of INAEXESuiiiiiiiiieiiiii e 15

3.3.2. BEvaluating the Table Order fOr JOINSocoevuiiiiiiieei e 17

4. UsSing INdeXeS EFfECHIVEIYo.uuiiiiiiiiice e e 19
4.1. Basic Principles for Effective INJeXiNgcoouuiiiiiiiiiiiii e 19

A.2. DEFINING INOEXES ...ttt ettt e e e e 20

4.3. The Goals for Effective INAEXINGccouviiieiiiiiecie e 20

A4, HOW INAEXES WOTK ...t 21

A5, SUMMBEY eeneeeie ittt et e e et e e et et e et e n et et e et e e et n et e e eaneees 22

5. Creating Flexible Schemas With JSONooiiiiiiii e 24
5.1. Using JSON Data Structures as VOItDB CONeNtovvvieviieiiiiiiieeiiiieeeeii e 24

5.2. QUENYING JSON DA ...ccvvueiiiiiieeiiti ettt e e e e e s 25

5.3. UPdating JSON DEEAceeeetieeeiitiiee ettt ettt et e ettt e e e et e e e eab e e eenia e eees 26

5.4. INdeXing JSON FIElUSooiiiiiieiii e 26

5.5. Summary: Using JSON iN VOIIDBcocuuiiiiiiiiiieiii et 27

6. Creating Geospatial APPlICALIONSccuuuiiieiii et enaans 28
6.1. The Geospatial DEALYPESceeereieeeeiie ettt e et e et e e et e e eeb e eees 28
6.1.1. The GEOGRAPHY _POINT DaalyPe ... cceevrneeeeiinieeeeiiieeeeiiaeeeeiineeeeniaeeeens 28

6.1.2. The GEOGRAPHY D@alYPEueiiirinieiiiiiiee et e et e et e et eeeni e e 28

6.1.3. Sizing GEOGRAPHY COlUMNScoiitiiiiiiiiiieeeeii e 29

6.1.4. How Geospatial Values are Interpretedovveveiiiiniiiiiineeciieeeei e 30

6.2. Entering GeoSPatial Dalaluuuieiiiiiieiiii e 30

6.3. Working With Geospatial Dalalccevuunieiiiiiieeiiii et 31
6.3.1. WOrking With LOCALIONScccuuuiiiiiiiieciiii et 32

6.3.2. WOrking With REJIONSccovuiiiiiiii et 33

7. Creating Custom Importers, Exporters, and FOrMattersooevuviiieeeiiiieeiei e 35
7.1 Writing @ CUSIOM EXPOITENuuieiiiiiee ettt e e 35
7.1.1. The Structure and Workflow of the Export Clientcccoooviiiiiiniiiiiineeenn, 35

7.1.2. How to Use Custom Properties to Configure the Clientcoooevvviiieiinnnnnen. 36

Guide to Performance
and Customization

7.1.3. How to Compile and Install the Clientcocoiviiiiiiiii e, 36
7.1.4. How to Configure the EXport CHENtcccoveiiiiiiiiecii e 37

7.2. Writing @ CUStOM IMPOITETciieeiiiiee it ee e e e e e e e et e e et e e e e et e e et eeaneees 37
7.2.1. Designing and Coding a Custom IMPOMerccovvieiiiieiiiieci e 38
7.2.2. Packaging and Installing a Custom IMPOrterooevveieeiiiieeiieeciieeeeeeeeeeen, 39
7.2.3. Configuring and Running a Custom IMPOIteroeevvuieiiiiieiiieeiiieeeeeaieennn 40

7.3. Writing @ CuStom FOIMEILEYccuuiiiiiiiiie e e e e e e e e e an s 41
7.3.1. The Structure of the Custom FOrMELterovveiiiiiiieiiiiie e 41
7.3.2. Compiling and Packaging Custom Formatter Bundlesccooevviiiiiiiieinnnn, 43
7.3.3. Installing and Invoking Custom FOrMattersvevevneeiinieiiiieeiieecee e e 44
7.3.4. Using Custom Formatters With the kafkaloader Utilitycccccoeiiiiiiinnnnn, 45

8. Creating Custom SQL FUNCLIONSuuiiiieiiiie e e e e e e e e e e e et eean e eees 47
8.1. Writing a User-Defined FUNCLIONuiiiiiiiii e e e e 47
8.2. Loading a User-Defined Function into the Databaseccooevvvviiiinciinccii e, 48
8.3. Declaring a User-Defined FUNCLIONcouviiiiiiiie e e 49
8.4. Invoking User-Defined Functions in SQL StatementsScc.ovevvveiiiieeiiiieiiiieeieeeneeeenn 49
9. Understanding VOItDB MeMOrY USAQEuueiuviiiiieeiiiieiiee e e e e e e et s e e e e s e sat e e eaneesanas 50
9.1. HOW VOIIDB USES MEIMOIYiiiiiiiiieiiiee e e e e e e e e e e et e et e e et e e et eeaaeeaens 50
9.2. Actions that Impact MemOory USBOEocvuuiiiiieiiii e e e e e e e 51
9.3. HOW VOItDB ManageS MEMOIYciuuneiiieeiieeeieeeiieeateeeeae e st e e st e et esatneesaneeeannes 53
9.4. How Memory is Allocated and Deallocatedcoevviiiiiiiiiiiiiciiie e 54
9.5. Controlling How Memory iS AIIOCEEEAccovuiiiiiiieie e e e 54
9.6. Understanding Memory Usage for Specific Applicationscooevvvviiiiiiiiiiiiiineiiens 55
O /=0 T=o T o TR 21 T 57
10.1. The IMportanCe Of TIMEiiei e e e e e e e e e eanas 57
10.2. UsSing NTP t0 Manage TiImE .. c.uueiiiieiii e eee e e et e et e e e e e et e e e eeees 57
10.2.1. BasiC Configurationccuueiiueiiieeii e aan e 57
10.2.2. Troubleshooting 1SSues With TIMEccouiiiiiiiiiii e 58
10.2.3. Correcting Common Problems with Timecccooeiiiiiiiii e 58
10.2.4. Example NTP Configurationoeviuiiiiiieiii e e e e e e e e aae e 59

10.3. Configuring NTP in a Hosted, Virtual, or Cloud Environmentc..ccoovvviiieeinnn. 60
10.3.1. Considerations for Hosted ENVIrONMENESoevviveieeiiiieeeeiiieeeeein e 61
10.3.2. Considerations for Virtual and Cloud Environmentscocovvviveeviiiineeneninnnnn. 61

List of Figures

2.1. Synchronous ProcedUIe CallSveiiiiieiiii et eeees 7
2.2. Asynchronous Procedure CallSu i 7
9.1. The Three Types of Memory iN VOITDBcoouuiiiiiiiii e 51
9.2. Details of Memory Usage During and After an SQL Statementcccvuoveiieiinieiiiiineeeinnnnn. 52
9.3. Controlling the JAVa HEAD SIZEuuiiiiiii e 55

List of Tables

7.1. Structure of the Custom Importer

Vi

List of Examples

10.1. Custom NTP Configuration File

Vii

Preface

This book provides details on using VoltDB to optimize the performance of your database application
as well as customize selective features of the VoltDB product. Other books — specifically the VoltDB
Tutorial and Using VoltDB — describe the basic features of VoltDB and how to use them. However,
creating an optimized application requires using those features in the right combination and in the
appropriate context. What features you use and how depends on your specific application needs. This
manual provides advice on those decisions.

1. Organization of this Manual

This book is divided into ten chapters:

» Chapter 1, Introduction

» Chapter 2, Hello, World! Revisited

» Chapter 3, Understanding VoltDB Execution Plans

» Chapter 4, Using Indexes Effectively

» Chapter 5, Creating Flexible Schemas With JSON

» Chapter 6, Creating Geospatial Applications

» Chapter 7, Creating Custom Importers, Exporters, and Formatters
» Chapter 8, Creating Custom SQL Functions

* Chapter 9, Understanding VoltDB Memory Usage

» Chapter 10, Managing Time

2. Other Resources

This book provides recommendations for optimizing VoltDB applications and customizing database
features. It assumes you are aready familiar with VoltDB and its features. If you are new to VoltDB, we
suggest you read the following books first:

» VolItDB Tutorial provides a quick introduction to the product and is recommended for new users.
 VoltDB Planning Guide provides guidance for evaluating and sizing VoltDB implementations.
» Using VoltDB provides a complete reference to the features and functions of the VoltDB product.

* VoItDB Administrator's Guide provides information for system operators on setting up and managing
VoltDB databases and the clusters that host them.

These books and more resources are available on the web from http://docs.voltdb.com/.

viii

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/PlanningGuide/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/AdminGuide/
http://docs.voltdb.com/

Chapter 1. Introduction

VoltDB is a best-in-class database designed specifically for high volume transactional applications. Other
books describe the individual features and functions of VVoltDB. However, getting the most out of any
technology is not just a matter of features; it is using the features effectively, in the right combination,
and in the right context.

The goal of this book isto explain how to achieve maximum performance using VoltDB. Performanceis
affected by many different factors, including:

* The design of your database and its stored procedures
» Theclient applications

» The configuration of the servers that run the database
* The network that connects the servers

Understanding the impact of each factor and the rel ationship between them can help you both design better
solutions and detect and correct problems in a running system. However, first you must understand the
product itself. If you are new to VoItDB, it is strongly recommended that you read VoltDB Tutorial and
Using VolItDB before reading this book.

1.1. What Affects Performance?

There is no single factor that drives performance or even a single definition for what constitutes
"good" performance. VolItDB is designed to provide exceptional throughput and much of this book is
dedi cated to an explanation of how you can maximize throughput in your application design and hardware
configuration.

However, another aspect of performance that is equally important to database applications is durability:
resilience against — and ability to recover from — hardware failures and other error conditions. VoltDB
has features that enhance database durability. However, these features have their own requirements,
particularly on system sizing and configuration.

All applications are different. There is no single combination of application design, hardware
configuration, or database features that can satisfy them all. Y our specific requirements drive the trade
offs that need to be made concerning how you configure the database system as awhole. The goal of this
book isto provide you with the facts you need to make an informed decision about those trade offs.

1.2. How to Use This Book

Thisbook is divided into six chapters:

» The beginning of the book (chapters 2 and 4) explains how to design your database schema, stored
procedures, and client applications for maximum performance.

» Chapters 5 explains how to accommodate flexibility in the schema design through the use of JSON
columns and indexes.

» Chapter 6 explains how to use VoltDB's geospatial capabilities for applications that need to combine
standard database content with | ocation-specific information such geographic points and shapes.

e Chapter 7 explainsin detail how memory is used by the VoltDB server process.

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/UsingVoltDB/

Introduction

» Chapter 8 provides guidelines for configuring hardware and operating systems for running a VoltDB
cluster.

Chapter 2. Hello, World! Revisited

The VoltDB software kit includes a Hello World example in the directory / doc/tutorial s/
hel | owor | d that shows you how to create a simple VoltDB application, including a schema, stored
procedures, and a client application. However, storing five records and doing a single SELECT is not a
terribly interesting database application.

VoltDB is designed to process hundreds of thousands of transactions a second, providing unparalleled
throughput. Hello World does little to demonstrate that. But perhaps we can change it a bit to better
emulate real world situations and, in the process, learn how to write applications that maximize the power
of VoltDB.

2.1. Optimizing your Application for VoltDB

VoltDB can be used generically like any other database to insert, select, and update records. But VoltDB
also speciaizesin:

* Scalability
* Throughput performance
 Durability

Durability isbuilt into the VoltDB database server software through several different functions, including
snapshots, K-Safety, and command logging, features that are described in more detail in the Using VoltDB
manual. Scalability and throughput are related to server configuration (e.g. number of servers, memory
capacity, etc.). However, there are several things that can be done in the design of the database and the
client application to maximize the throughput on any cluster. In particular, this update to the Hello World
tutorial focuses on designing your application to take advantage of :

« Partitioned and replicated tables
» Asynchronous stored procedure calls

» Client connectionsto al nodes in the database cluster

2.2. Applying Hello World to a Practical Problem

The problem with Hello World isthat it doesn't match any real problem, and certainly not onethat VVoltDB
is designed to solve. However, it is not too hard to think of a practical problem where saying hello could
be useful.

Let's assume we run a system (awebsite, for example) where usersregister and log in to use services. We
want to acknowledge when a user logs in by saying hello. Let's further assume that our system is global
in nature. It would be nice if we could say hello in the user's native language.

To support our new user sign in process, we need to store the different ways of saying hello in each
language and we need to record the native language of the user. Then, when they sign in, we can retrieve
their name and the appropriate word for hello.

This means we need two tables, one for the word "hello" in different languages and one for the users. We
can reuse the HELLOWORLD table from our original application for the first table. But we need to add a

http://docs.voltdb.com/UsingVoltDB/

Hello, World! Revisited

table for user data, including a unique identifier, the user's name, and their language. Often, the best and
easiest unique identifier for an online account is the user's email address. So that iswhat we will use. Our
schema now looks like this:

CREATE TABLE HELLOWORLD (
HELLO VARCHAR(15)
WORLD VARCHAR(15) ,
DI ALECT VARCHAR(15) NOT NULL,
PRI MARY KEY (DI ALECT)

)

CREATE TABLE USERACCOUNT (
EMAI L VARCHAR(128) UNI QUE NOT NULL,
FI RSTNAME VARCHAR(15),
LASTNAME VARCHAR(15),
LASTLOG N Tl MESTAMP,
DI ALECT VARCHAR(15) NOT NULL,
PRI MARY KEY (EMAIL)

)

Oh, by the way, now that you know how to write a basic VoltDB application, you don't need to typein
the sample code yourself anymore. Y ou can concentrate on understanding the nuances that make VoltDB
applications exceptional. The compl ete sources for the updated Hello World example are available in the
doc/tutorial s/ hel |l oworl drevi sit ed subfolder when you install the VoltDB software.

2.3. Partitioned vs. Replicated Tables

2.3.1.

In the original Hello World example, we partitioned the HELLOWORLD table on dialect to demonstrate
partitioning, which is a key concept for VoltDB. However, there are only so many languages in the
world, and the words for "hello" and "world" are not likely to change frequently. In other words, the
HELLOWORLD tableis both small and primarily read-only.

Not all tables need to be partitioned. If a table is small and updated infrequently, it can be replicated.
Copies of areplicated table are stored on every server. This means that the tables can only be updated
with a multi-partition procedure (which is why you shouldn't replicate write-intensive tables). However,
replicated tables can be read from any single-partitioned procedure since thereisacopy availableto every
partition.

HELLOWORLD isan ideal candidate for replication, so we will replicate it in thisiteration of the Hello
World application.

USERACCOUNT, on the other hand, is write-intensive. The table is updated every time a user signsin
and the record count increases as new users register with the system. Therefore, it is important that we
partition this table.

Defining the Partitioning Column

The partitioning column needs to support the key access methods for the table. In the case of registered
users, the table is accessed viathe user's unique I D, their email address, when the user signsin. So we will
define the EMAIL column as the partitioning column for the table.

The choice of partitioning column is defined in the database schema. If a table is not listed as
being partitioned, it becomes a replicated table by default. So for the updated Hello World example,

Hello, World! Revisited

you can remove the PARTITION TABLE statement for the HELLOWORLD table and add one for
USERACCOUNT. The updated schema contains the following PARTITION TABLE statement:

PARTI TI ON TABLE USERACCOUNT ON COLUWN EMNAI L;

2.3.2. Creating the Stored Procedures

For the sake of demonstration, we only need three stored procedures for our rewrite of Hello World:
* Insert Language — Loads the HELLOWORLD table, just asin the original Hello World tutorial.
* Register User — Creates anew USERACCOUNT record.

» Sign In — Performs the bulk of the work, looking up the user, recording their sign in, and looking up
the correct word for saying hello.

2.3.2.1. Loading the Replicated Table

Toload the HELLOWORLD table, we can reuse the Insert stored procedure from our origina Hello World
example. The only change we need to makeis, because HELLOWORLD isnow areplicated table, remove
the PARTITION ON clause from the CREATE PROCEDURE statement that defines the Insert procedure
in the schema DDL.

2.3.2.2. Registering New Users

To add anew user to the system, the RegisterUser stored procedure needsto add the user's name, language,
and their email address as the unique identifier for the USERACCOUNT table.

Creating a new record can be done with a single INSERT statement. In this way, the RegisterUser
procedure is very similar to the Insert procedure for the HELLOWORLD table. The RegisterUser
procedure looks like this:

CREATE PROCEDURE Regi st er User
AS | NSERT | NTO USERACCOUNT
(Emai |, Firstnane, Lastname, Dialect)
VALUES (?,?,?,7?);

The difference is that RegisterUser can and should be single-partitioned so it does not unnecessarily tie
up multiple partitions. Since the table is partitioned on the EMAIL column, the CREATE PROCEDURE
statement should include a PARTITION ON clause like so:

CREATE PROCEDURE Regi st er User
PARTI TI ON ON TABLE Useraccount COLUWN Emsi |
AS | NSERT | NTO USERACCOUNT
(Emai |, Firstnane, Lastnanme, Dialect)
VALUES (?,7?,?,7);

2.3.2.3. Signing In

Finally, we need a procedure to sign in the user and retrieve the word for "hello" in their native language.
Thekey goal for thisprocedure, sinceit will beinvoked more frequently than any other, isto be performant.
To ensure the highest throughput, the procedure needs to be single-partitioned.

Hello, World! Revisited

The user provides their email address as the unique ID when they log in, so we can make the procedure
single-partitioned, specifying the email address as the partitioning value. Within the procedure itself we
perform two actions:

e Join the USERACCOUNT and HELLOWORLD tables based on the Diaect column to retrieve both
the user's name and the appropriate word for "hello"

» Update the user's record with the latest login timestamp.

Because this stored procedure uses two queries, we can write the stored procedure logic as a Java class.
(SeeUsing VolItDB for details on writing Javastored procedures.) We could write custom code to check the
return values from the join of the two tablesto ensure that an appropriate user record was found. However,
VoltDB provides predefined expectations for many common query conditions. We can take advantage
of one of these expectations, EXPECTS ONE_ROW, to verify that we get the results we want. If the
first query, getuser, does not return one row (for example, if no user record is found), VoltDB aborts the
procedure and notifies the calling program that a rollback has occurred.

Expectations provide away to simplify and standardize error handling in your stored procedures. See the
chapter on simplifying application coding in the Using VoltDB manual for more information.

Theresulting Signin procedureis as follows:

i mport org.voltdb. *;
public class Signln extends VoltProcedure {

public final SQStnt getuser = new SQSt nt (
"SELECT H. HELLO, U.FIRSTNAME " +
" FROM USERACCOUNT AS U, HELLOMORLD AS H " +
"WHERE U.EMAIL = ? AND U. DI ALECT = H. DI ALECT; "
)
public final SQStnt updatesignin = new SQSt nt (
" UPDATE USERACCOUNT SET | astlogin=? " +
"WHERE EMAIL = ?2;"

)

public VoltTable[] run(String id, long signintinme)
t hrows Vol t Abort Exception {
vol t QueueSQL(getuser, EXPECT_ONE ROW id);
vol t QueueSQL(updatesignin, signintine, id);
return vol t Execut eSQL();

}

We also want to declare the procedure and define how it is partitioned in the schema DDL. To do that,
we add the following statement to our schemafile:

CREATE PROCEDURE
PARTI TI ON ON TABLE User account COLUWN Emmi |
FROM CLASS Si gnl n;

2.4. Using Asynchronous Stored Procedure Calls

Now we are ready to write the client application. There are two key aspects to taking full advantage of
VoltDB in your client applications. One is make connections to all nodes on the cluster, which we will
discuss shortly. The other isto use asynchronous stored procedure calls.

http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapSimplify.php
http://docs.voltdb.com/UsingVoltDB/

Hello, World! Revisited

You can call VoltDB stored procedures either synchronously or asynchronously. When you call a stored
procedure synchronously, your client application waits for the call to be processed before continuing. If
you call aprocedure asynchronously, your application continues processing oncethe call hasbeeninitiated.
Once the procedure is complete, your application is notified through a callback procedure.

2.4.1. Understanding Asynchronous Programming

Synchronous calls are easy to understand because all processing is linear; your application waits for the
guery results. However, after VoltDB processes a transaction — between when VoltDB sends back the
results, your application handlesthe results, initiates anew procedure call, and the call reachesthe VoltDB
server — the VoltDB database has no work to do (assuming there is only one client application). In this
situation whether the stored procedures are single- or multi-partitioned doesn't matter, since you are only
ever asking the cluster to process one procedure at atime.

AsshowninFigure 2.1, “ Synchronous Procedure Calls’, more time can be spent in the round trip between
transactions (shown in yellow) than in processing the stored procedures themselves.

Figure 2.1. Synchronous Procedure Calls

Client VoltDB
Application Server

>

Request

Response

Stored
Procedure

What you would like to do is queue up as much work (i.e. transactions) as possible so the database always
haswork to do as soon as each transaction iscompl ete. Thisiswhat asynchronous stored procedure callsdo.

As soon as an asynchronous call is initiated, your application continues processing, including making
additional asynchronous calls. These calls are queued up on the servers and processed in the order they
are received. Once a stored procedure is processed, the results are returned to the calling application and
the next queued transaction started. As Figure 2.2, “ Asynchronous Procedure Calls’ shows, the database
does not need to wait for the next procedure request, it simply takes the next entry off the queue as soon
as the current procedure is complete.

Figure 2.2. Asynchronous Procedure Calls

Client VoltDB
Application Server
Requests Duew
|::> —
[>
Responses
Callback <::I
Procedure < y Stored

Frocedure

Hello, World! Revisited

2.4.2. The Callback Procedure

For asynchronous procedures calls, you must provide a callback procedure that is invoked when the
requested transaction is complete. Y our callback procedure notifies the client application that the call is
complete and performs the same logic your client application normally performs following a procedure
call: interpreting the results of the procedure (if any) and making appropriate changes to client application
variables.

For our new Hello World example, when the Signin procedure completes, we want to display the return
valuesin awelcome message to the user. So our callback procedure might look like this:

static class SignlnCallback inplements ProcedureCall back { o
@verride
public void clientCallback(d ientResponse response) ({ (2]

/1 Make sure the procedure succeeded.
if (response.getStatus() != dientResponse. SUCCESS) {©
Systemerr.println(response.getStatusString());

return;
}
Vol t Tabl e results[] = response.getResults(); o
Vol t Tabl e recordset = results[0];

Systemout.printf("%, %!\n",
recordset.fetchRow0).getString("Hello"),
recordset.fetchRow0).getString("Firstnane"));

}

The following notes describe the individual components of the callback procedure.

2]

You define the callback procedure as a class that implements (and overrides) the VoltDB
ProcedureCallback class.

Whereas asynchronous procedure call returnsthe ClientResponse asareturn value, an asynchronous
call returns the same ClientResponse object as a parameter to the callback procedure.

In the body of the callback, first we check to make sure the procedure completed successfully. (If
the procedure fails for any reason, for example if a SQL query generates a constraint violation, the
ClientResponse contains information about the failure.) In this case we are only looking for success.
Once we know the procedure succeeded, we perform the same functions we would for asynchronous
call. In this case, we retrieve the appropriate words from the response and use them to construct and
display agreeting to the user.

Sincewe also want to call the RegisterUser procedure asynchronously, we need to create acallback for that
procedure as well. In the case of registering the user, we do not need to provide feedback, so the callback
procedureissimplified. All that is needed in the body of the callback isto detect and report any errors that
might occur. The RegisterCallback lookslike this:

Hello, World! Revisited

static class Regi sterCall back inplenents ProcedureCall back {

@verride
public void clientCallback(C ientResponse response) ({

/1 Make sure the procedure succeeded. |If not
/1 (for exanple, account already exists),
/1 report the error.
if (response.getStatus() != CdientResponse. SUCCESS) ({
Systemerr.println(response.getStatusString());

}

}
2.4.3. Making an Asynchronous Procedure Call

Onceyou defineacallback, you areready to initiate the procedure call. Y ou make asynchronous procedure
calls in the same way you make synchronous procedure calls. The only differences are that you specify
the callback procedure as the first argument to the callProcedure method and you do not need to make an
assignment to a client response, since the response is sent as a parameter to the callback procedure.

The following example illustrates both a synchronous and an asynchronous call to the Signin procedure
we defined earlier:

/1 Synchronous procedure call
C i ent Response response = myApp. cal | Procedure("Si gnln",
emai |, currenttine);

/1 Asynchronous procedure call
myApp. cal | Procedur e(new Si gnl nCal | back(), "Signln",
emai |, currenttine);

If you do not need to verify the results of atransaction, you do not even need to create a unique callback
procedure. Just as you can make a synchronous procedure call and not assign the resultsto alocal object if
they are not needed, you can make an asynchronous procedure call using the default callback procedure,
which does no specia processing. For example, the following code calls the Insert procedure to add a
HELLOWORLD record using the default callback:

nyApp. cal | Procedur e(new ProcedureCal | back(), "Insert",
"English", "Hello", "Wrld");

2.5. Connecting to all Servers

Thefinal step, once you have optimized the partitioning and the procedure invocations, isto maximize the
bandwidth between your client application and the cluster. Y ou can create connectionsto any of the servers
in the cluster and that server will coordinate the processing of your transactions with the other nodes.

Each node in the cluster has its own queue of pending transactions. That node is responsible for:
» Receiving the transaction request from the client and returning the results upon completion
* Routing thetransactionto the appropriate partition, or initiator, based on the transaction's characteristics.

There is one initiator for each unique partition, and a separate initiator for multi-partition transactions
within the cluster. Once theinitiator receives the transaction, it is responsible for:

Hello, World! Revisited

 Scheduling the transaction with the other nodesin the cluster

« Distributing the work items for the transaction to the appropriate nodes and partitions and collecting
responses when it is time to execute the transaction

Any nodein the cluster can receive transaction requests. However, for maximum performanceit is best if
al nodes do their share. Initiators are automatically distributed around the cluster. But if only one nodeis
interacting with the client application, managing the queue can become a bottleneck and leave the other
nodes in the cluster idle while they wait for work items.

This is why the recommendation is for client applications to create connections to as many nodes in
the cluster as possible. When there are multiple connections, the Java client interface will direct each
transaction to the most appropriate server, avoiding extra "hops' within the cluster as requests are
redirected to the corresponding initiator. For other clients that support multiple connections, requests use
around-robin approach to distribute the procedure calls.

By default, the VoltDB sample applications assume a single server (localhost) and only create a single
connection. This makes the examples easy to read and easy to run for anyone who downloads the kit.
However, in real world examples your client application should create connections to all of the nodes in
the cluster to evenly distribute the work load and avoid network bottlenecks.

Theupdateto the Hello World example demonstrates one method for doing this. Sinceitisdifficult to know
in advance what nodes are used in the cluster, the revised application uses an argument on the command
line to specify what nodes to connect to. (Avoiding hard-coded server names is also a good practice so
you do not have to recode your application if you add or replace servers in the future.)

The first argument on the command line is assumed to be a comma-separated list of server names. This
list is converted to an array, which is used to create connections to each node. If thereis no command line
argument, the default server "localhost” is used. The following is the applicable code from the beginning
of the client application. Note that only one client is instantiated but multiple connections are made from
that client object.

public static void main(String[] args) throws Exception {

/*
* Expect a conma-separated |ist of servers.
* |f not, use |local host.
*/
String serverlist = "local host";
if (args.length > 0) { serverlist = args[0]; }
String[] servers = serverlist.split(",");

/*
* Instantiate a client and connect to all servers
*/
org.voltdb.client.Client nyApp = CientFactory.createCient();
for (String server: servers) {
nmyApp. cr eat eConnect i on(server);

}
2.6. Putting it All Together

Now that we have defined the schema, created the stored procedures and the callback routines for
asynchronous calls, and created connectionsto all of the nodes in the cluster, we can put together the new

10

Hello, World! Revisited

and improved Hello World application. We start by loading the HELLOWORLD table just aswe did in
the previous version. Since this is only done once to initialize the run, we can make them synchronous
calls. Note that we do not need to worry about constraint violations. If the client application is run two or
more times, we can reuse the pre-loaded content.

/*

* Load the database.

*/

try {
nyApp. cal | Procedure("Insert"”, |anguage[0O], "Hello", "World");
nmyApp. cal | Procedure("Insert"”, |anguage[l], "Bonjour", "Mnde");
nyApp. cal | Procedure("Insert"”, |anguage[2], "Hola", "Mundo");
nyApp. cal | Procedure("Insert"”, |anguage[3], "Hej", "Verden");
nyApp. cal | Procedure("Insert"”, |anguage[4], "C ao", "Mondo") ;

} catch (Exception e) {
/1 Not to worry. lgnore constraint violations if we
/1 load this table nore than once.

}

To show off the performance, we then emulate the running system. We need some users. So, again, we
initialize afew user records using the RegisterUser stored procedure. As a demonstration, we use a utility
method for generating pseudo-random email addresses.

/*
* Start by nmaking sure there are at |least 5 accounts
*/
whi | e (maxaccount| D < 5) {
String first = firstnane[seed. nextlnt(10)];

String last = | astnane[seed. nextInt(10)];
String dialect = |anguage[seed. nextInt(5)];
String email = generateEmail (maxaccountl|D);

nmyApp. cal | Procedur e(new Regi st er Cal | back(), "Regi sterUser",
emai |l ,first,last,dialect);
maxaccount | D++,;

}

Finally, we want to repeatedly call the Signin stored procedure, while occasionally registering a new user
(say, once every 100 sign ins).

11

Hello, World! Revisited

/*

* Enmul ate a busy system 100 signins for every 1 new registration.
* Run for 5 mnutes.

*/

| ong countdowntimer = SystemcurrentTimeMIlis() + (60 * 1000 * 5);
whil e (countdowntiner > SystemcurrentTimeMIIlis()) {

for (int i=0; i<100; i++) {
/lint id = seed. nextlnt(maxaccountlD);
String user = generateEmil (seed. nextlnt(maxaccountlD));
nmyApp. cal | Procedure(new Si gnl nCal | back(), "Signln",
user, SystemcurrentTimeMIlis());

}

String first = firstnane[seed. nextlnt(10)];
String last = | astnane[seed. nextInt(10)];
String dialect = |anguage[seed. nextInt(5)];
String email = generateEmail (maxaccount!|D);

nmyApp. cal | Procedur e(new Regi st er Cal | back(), "Regi sterUser",
emai |l ,first,last,dialect);
maxaccount | D++;

}

The completed source code can be found (and run) in the doc/tutorials/
hel | owor | drevi si t ed/ folder where VoltDB isinstalled. Give it atry on a single system or on a
multi-node cluster.

2.7. Next Steps

Updating the Hello World example demonstrates how to design applications that can maximize the value
of the VoltDB software. However, even with these changes, Hello World is still avery simple application.
Deciding how to partition the database for your specific needs and how to configure acluster to support the
VoltDB features you want to use requires careful consideration of capabilitiesand tradeoffs. Thefollowing
chapters provide further guidance on this topics.

12

Chapter 3. Understanding VoltDB
Execution Plans

This chapter explainshow VoltDB plansfor executing SQL statements, the information it generates about
the plans, and how you can use that information to evaluate and optimize your SQL code.

3.1. How VolItDB Selects Execution Plans for
Individual SQL Statements

When VoltDB parses a stored procedure definition or an ad hoc query, it reviews possible execution
plans for the SQL statements involved. Based on the schema, the partition columns, and any implicit or
explicit indexes for the tables, VoltDB chooses what it believes is the most efficient plan for executing
each statement. The more complex the SQL statement, the more execution plans VoltDB considers.

As part of the compilation process, VoltDB generates explain or execution plans that you can use to
understand what execution order was selected. Y ou can also affect those plans by specifying the order in
which tables are joined as part of your SQL statement declaration.

3.2. Understanding VoltDB Execution Plans

VoltDB stores the execution plans for stored procedures along with the schemain the database. There are
three methods for reviewing these execution plans. Y ou can:

 Call the @Explain or @ExplainProc system procedures
» Usethe explain or explainproc directivesin sglcmd
» Review the execution plansin the VoltDB Management Center Schema tab

The system procedures and sglemd directives produce identical output. For example, if you enter the
explainproc directive in sglcmd with the name of a stored procedure, it displays the execution plan for
every SQL statement defined in the stored procedure. Y ou get the same results calling the @ExplainProc
system procedure. Y ou can see the same information by connecting to the VoltDB Management Center in
aweb browser. The explain directive and @Explain system procedure allow you to review the execution
plan for an ad hoc SQL query by entering the text of the query.

Let'slook at the voter sample program as an example. The voter sample has five stored procedures. The
Initialize procedure declaresthree SQL statements. Y ou can seethe execution plansfor all three statements
by starting the sample application, connecting to the server using sglcmd and using the explainproc
directive. You can also get the execution plan for an ad hoc count of the votes table using the explain
directive, like so:

$ sqlcmd
1> explainproc Initialize;

2> explain select count(*) fromvotes;

In the VoltDB Management Center, which isavailable from aweb browser via http:://{ server-name}:8080
by default, you can see the execution plans by navigating to the Schema tab, clicking on Procedures &

13

Understanding VoltDB
Execution Plans

L, and expanding the stored procedure to see the individual statements. The execution plan is displayed
in the expanded view. The following example shows the execution plan for InsertContestantStmt in the

Initialize stored procedure.

® ® / W VoltDB Management Center % | =
€ localhost:8080/#p @ Q search a9 3+ ae =
ey
vo LTbB DB Monitor ~ Admin =S C0ER SQL Query Help ~
Overview = Schema WZGLEGTEERACRIEN Size Worksheet | DDL Source
Procedures & SQL
~) Expand All
Procedure Name & Parameters & Partitioning & RW & Access & Attributes)
> ContestantWinningStates INTEGER, INTEGER [i [Read | None [Java | scans |
> GetStateHeatmap None [maum | [Reaa | None [Java | scans |
v Initialize INTEGER, STRING { Mt | { wiite | None { Java |
Read/Write access to tables: AREA_CODE_STATE, CONTESTANTS
Statement Name Statement SQL Params R/W Attributes
3 checkStmt SELECT COUNT(*) FROM contestants; None =
» [nsertACESimi INSERT INTO area_code_state VALUES (?,?); SMALLNT. sTRING [T
w insertContestantStmt INSERT INTO contestants (contestant name, contestant number) VALUES (?, ?); STRING, INTEGER m

Explain Plan:

RETURN RESULTS TO STORED PROCEDURE
LIMIT 1
RECEIVE FROM ALL PARTITIONS
SEND PARTITION RESULTS TO COORDINATOR
INSERT into "CONTESTANTS"
MATERIALIZE TUPLE from parameters and/or literals

3.3. Reading the Execution Plan and Optimizing
Your SQL Statements

The execution plan is an ordered representation of how VoltDB will execute the statement. Read the plan
from bottom up to understand the order in which the plan is executed. So, for example, looking at the
InsertACSSInt SQL statement in the Voter application's Initialize stored procedure, we see the following
execution plan for inserting an area code into the area_code_state table:

RETURN RESULTS TO STORED PROCEDURE
LIMT 1
RECElI VE FROM ALL PARTI TI ONS
SEND PARTI TI ON RESULTS TO COORDI NATOR
I NSERT i nto "AREA_CODE_STATE"
MATERI ALI ZE TUPLE from paraneters and/or literals

As mentioned before it is easiest to read the plans from the bottom up. So in this instance, how the SQL
statement is executed is by:

» Constructing arecord based on input parameters and/or literal values

* Inserting the record into the table

Understanding VoltDB
Execution Plans

» Because thisis amulti-partitioned procedure, each partition then sendsiits results to the coordinator

» The coordinator then rolls up the results, limits the results (that is, the status of the insert) to one row,
and returns that value to the stored procedure

Y ou will notice that the lines of the execution plan are indented to indicate precedence. For example, the
construction of the tuple must happen before it isinserted into the table.

Let's look at another example from the Voter sample. The checkContestantStmt in the Vote stored
procedure performs a read operation:

RETURN RESULTS TO STORED PROCEDURE
| NDEX SCAN of " CONTESTANTS" using its primary key index
uni quely mat ch (CONTESTANT _NUMBER = ?0)

You can see from the plan that the scan of the CONTESTANTS table uses the primary key index. It is
also a partitioned table and procedure so the results can be sent directly back to the stored procedure.

Of course, planning for a SQL statement accessing one table with only one condition is not very difficult.
The execution plan becomesfar moreinteresting when eval uating more complex statements. For example,
you can find amore complex execution plan in the GetStateHeatmap stored procedure:

RETURN RESULTS TO STORED PROCEDURE
ORDER BY (SORT)
Hash AGGREGATI ON ops: SUM V_VOTES_BY_ CONTESTANT NUVBER STATE. NUM VOTES)
RECEl VE FROM ALL PARTI TI ONS
SEND PARTI TI ON RESULTS TO COORDI NATOR
SEQUENTI AL SCAN of "V_VOTES_BY_CONTESTANT NUVBER STATE"

3.3.1.

In this example you see an execution plan for a multi-partition stored procedure. Again, reading from the
bottom up, the order of execution is:

At each partition, perform a sequentia scan of the votes-per-contestant-and-state table.
* Return theresults from each partition to theinitiator that is coordinating the multi-partition transaction.

» Use an aggregate function to sum the votes for all partitions by contestant.

Sort the results

And finally, return the results to the stored procedure.

Evaluating the Use of Indexes

What makes the execution plans important is that they can help you optimize your database application
by pointing out where the data access can be improved, either by modifying indexes or by changing the
join order of queries. Let's start by looking at indexes.

VoltDB uses information about the partitioning column to determine what partition needs to execute
a single-partitioned stored procedure. However, it does not automatically create an index for accessing
records in that column. So, for example, in the Hello World example, if we remove the primary key
(DIALECT) on the HELLOWORLD table, the execution plan for the Select statement also changes.

Before:

RETURN RESULTS TO STORED PROCEDURE

15

Understanding VoltDB
Execution Plans

| NDEX SCAN of "HELLOWORLD' using its primary key index
uni quely match (DI ALECT = ?0)

After:

RETURN RESULTS TO STORED PROCEDURE
SEQUENTI AL SCAN of "HELLOAORLD'
filter by (DI ALECT = ?0)

Note that the first operation has changed to a sequential scan of the HELLOWORLD table, rather than a
indexed scan. Since the Hello World example only has a few records, it does not take very long to look
through five or six records looking for the right one. But imagine doing a sequentia scan of an employee
table containing tens of thousands of records. It quickly becomes apparent how important having an index
can be when looking for individua recordsin large tables.

There is an incremental cost associated with inserts or updates to tables containing an index. But the
improvement on read performance often far exceedsany cost associated with writes. For example, consider
the flight application that is used as an example in the Using VoItDB manual. The FLIGHT table is a
replicated table with an index on the FLIGHT _ID, which helps for transactionsthat join the FLIGHT and
RESERVATION tables looking for a specific flight.

However, one of the most common transactions associated with the FLIGHT table is customers looking
for flights during a specific time period; not by flight ID. In fact, looking up flights by time period is
estimated to occur at least twice as often as looking for a specific flight.

The execution plan for the LookupFlight stored procedure using the original schemalooks like this;

RETURN RESULTS TO STORED PROCEDURE
SEQUENTI AL SCAN of "FLI GHT"
filter by ((((ORIGN = ?0) AND (DESTI NATI ON = ?1))
AND (DEPARTTI ME > 22)) AND (DEPARTTI ME < 23))

Clearly, looking through a table of 2,000 flights without an index 10,000 times a second will impact
performance. So it makes sense to add another index to improve this transaction. For example:

CREATE TABLE Flight (
Flight! D I NTEGER UNI QUE NOT NULL,
Depart Ti me TI MESTAVMP NOT NULL,
Origin VARCHAR(3) NOT NULL,
Destination VARCHAR(3) NOT NULL,
Nunmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(Fl i ght | D)
);
CREATE | NDEX flightTi meldx ON FLIGHT (departtinme);

After adding the index, the execution plan changes to use the index:

RETURN RESULTS TO STORED PROCEDURE
| NDEX SCAN of "FLIGHT" using "FLI GHTTI MEl DX"
range-scan covering from (DEPARTTI ME > ?2) whil e (DEPARTTIME < ?3),
filter by ((ORIG N = ?0) AND (DESTI NATION = ?1))

Indexes are not required for every database query. For very small tables or infrequent queries, an index
could be unnecessary overhead. However, in most cases and especially frequent queriesover large datasets,
not having an applicable index can severely impact performance.

16

http://docs.voltdb.com/UsingVoltDB/

Understanding VoltDB
Execution Plans

3.3.2.

When tuning your VoltDB database application, one useful stepisto review the schemafor any unexpected
sequential (non-indexed) scans. The VoltDB Management Center makes this easy because it puts the
"Scans' icon in the attributes column for any stored procedures that contain sequential scans.

» Select STRING [single | [Read | None

See the following chapter, Chapter 4, Using Indexes Effectively, for more information on tuning your
database through effective use of indexes.

Evaluating the Table Order for Joins

The other information that the execution plans provides, in addition to the use of indexes, is the order in
which the tables are joined.

Join order often impacts performance. Normally, when joining two or more tables, you want the database
engine to scan the table that produces the smallest number of matching records first. That way, there are
fewer comparisons to eval uate when considering the other conditions. However, at compiletime, VoltDB
does not have any information about the potentia sizing of the individual tables and must make its best
guess based solely on the table schema, query, and any indexes that are defined.

For example, assume we have a database that correlates employees to departments. There is a
DEPARTMENT table and an EMPLOY EE table, with a DEPT_ID column that acts as a foreign key.
But departments have managers, who are themselves employees. So thereisa MANAGER table that also
contains both aDEPT _ID and an EMP_ID column. The relationship of the tables |ooks like this:

Manager Department

Dept_ID

Emp_ID Dept_ID
Employee

Most transactions ook up employees by their employee ID or their department ID. So indexes are created
for those columns. However, say we want to look up al the employees that report to a specific manager.
Now we need to join the MANAGER table (to get the department 1D), the DEPARTMENT table (to get
the department name), and the EMPLOY EE table (to get the employees names). VoltDB does not know,
in advance when compiling the schema, that there will be many more employees than departments or
managers. As aresult, the winning plan might look like the following:

RETURN RESULTS TO STORED PROCEDURE
ORDER BY (SORT)
NESTLOOP | NDEX JO N
inline (I NDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
NESTLOOP | NDEX JO N
inline (INDEX SCAN of "MANAGER' using "MERIDX" (unique-scan covering))
RECElI VE FROM ALL PARTI TI ONS

17

Understanding VoltDB
Execution Plans

SEND PARTI TI ON RESULTS TO COORDI NATOR
SEQUENTI AL SCAN of " EMPLOYEE"

Clearly, performing a sequential scan of the employees (since the department 1D has not been identified
yet) is not going to provide the best performance. What you really want to do is to join the MANAGER
and DEPARTMENT tables first, to identify the department 1D before joining the EMPLOY EE table so
the last join can take advantage of the appropriate index.

For caseswhereyou arejoining multipletablesand know what the optimal join order would be, VVoltDB lets
you specify the join order as part of the SQL statement definition. Normally, you declare a new SQL stmt
class by specifying the SQL query only. However, you can provide a second argument specifying the join
order as acomma-separated list of table names and aliases. For example, the declaration of the preceding
SQL query, including join order, would look like this:

public final SQStnt Fi ndEnpByMgr = new SQLSt nt (
"SELECT dept. dept_nane, dept.dept_id, enmp.enp_id, " +
"enp.first_name, enp.last_nanme, manager.enp_id " +
"FROM MANAGER, DEPARTMENT AS Dept, EMPLOYEE AS Enp " +
"WHERE nmanager. enp_i d=? AND nanager. dept _i d=dept.dept_id " +
"AND manager . dept _i d=enp. dept _id " +
"ORDER BY enp. | ast_nane, enp.first_name",
"manager, dept, emp") ;

Note that where the query defines an alias for a table — as the preceding example does for the
DEPARTMENT and EMPLOY EE tables— thejoin order must use the alias name rather than the origina
table name. Also, if a query joins six or more tables, you must specify the join order or VoltDB reports
an error when it compiles the project.

Having specified the join order, the chosen execution plan changes to reflect the new sequence of
operations:

RETURN RESULTS TO STORED PROCEDURE
ORDER BY (SORT)
RECElI VE FROM ALL PARTI TI ONS
SEND PARTI TI ON RESULTS TO COCRDI NATOR
NESTLOOP | NDEX JO N
inline (I NDEX SCAN of "EMPLOYEE" using "EMPDEPTI DX" (uni que-scan covering))
NESTLOOP | NDEX JO N
inline (I NDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
SEQUENTI AL SCAN of " MANAGER'

The new execution plan has at least three advantages over the default plan:

* It starts with a sequential scan of the MANAGER table, atable with 10-20 times fewer rows than the
EMPLOYEE table.

» Because MANAGER and DEPARTMENT are replicated tables, al of the initia table scanning and
filtering can occur locally within each partition, rather than returning the full EMPLOY EE data from
each partition to the initiator to do the later joins and sorting.

» Becausethejoin order retrieves the department I D first, the execution plan can utilize the index on that
column to improve the scanning of EMPLOY EE, the largest table.

18

Chapter 4. Using Indexes Effectively

Indexes provide a classic “ space for speed” trade-off. They add to the persistent memory required by your
application data but they make query filtering significantly faster. They aso represent a trade-off that
sacrifices incremental write performance for potentially significant read performance, on the assumption
that indexed data is accessed by read queries more frequently than it is modified.

Using the best practices described in the chapter when defining indexes can maximize query performance
in return for minimum investments in memory usage and computation overhead when writing data.

4.1. Basic Principles for Effective Indexing

Here are seven tipsto creating effective indexesin VoltDB:

Avoid indexes that have a column list that is simply a prefix of another index's column list. The index
with the longer column list will usually serve the same queries as the shorter one. If the primary key
of table X is (A, B, C), then an index on (A, B) is of little use. An index on (B, C) may be of usein
this scenario or it may be more effective to define the primary key as (B, C, A) — if B islikely to be
filtered in queries where A is not equality-filtered.

Avoid "low-cardinality" indexes — An index defined solely on a column that only has a few distinct
values is usualy not very effective. Because of its large number of duplicate values, it does little to
narrow the set of rows to be sequentialy filtered by other filters in the query. Such an index can
sometimes cause the planner to fail to select amore effectiveindex for aquery or even amore efficient
sequential scan. One way to increase index effectiveness of low cardinality indexes is to add other
filtered columnsto the index, keeping in mind that the effectiveness of an index for a query "tops out"
at the first column that has an inequality filter — or before the second column that has an IN filter.

When deciding how to order columns within an index (or primary key or unique constraint) definition,
columnsthat are more likely to be filtered with an exact equality (such as A = ?), should belisted before
columns that tend to be range-filtered (B <= ?). Queries that are run the most often or that benefit the
most from indexing (perhaps because they lack filters that can be covered by other indexes) should
weigh more heavily in this decision.

In some cases, with aroughly equal mix between queriesusing formslike"WHERE A =?AND B <=7"
and other queriesusing formslike"WHERE A >? AND B =7?', it may be worthwhile to define indexes
on both permutations — on X(A, B ...) and on X(B, A ...). Otherwise, when two or more columnsin
an index tend to both get equality filtered in combination, it is generally better to list a column first if
it also tends to be filtered (without the other) in other queries. A possible exception to thisruleis when
the column has low cardinality (to avoid the ineffective use of the index).

Placing the low-cardinality column later in the index's list prevents the index from being applied as a
low-cardinality indexed filter and favors the selection of a more effective index or sequential scan.

Any non-unique filter that is listed in the schema report as having no procedures using it is a candidate
for elimination. But first, it may make sense to look for queries that would be expected to use the index
and determine what they are using instead for scans on the table. It may be that the index chosen by the
planner isnot actually as effective and that index may be the better candidate for elimination. Also, note
that indexes that are only used to support recalculation of min and max values in materialized views
may be erroneously reported as unused.

Index optimization isbest accomplished iteratively, eliminating or tuning an index on atable and seeing
its effect on statements before making other changes to other competing indexes.

19

Using Indexes Effectively

4.2. Defining Indexes

VoltDB indexes provide multiple benefits. They help to guard against unintended duplication of data. They
help to optimize recal culation of min and max valuesin materialized views. Treeindexesin particular can
also be used to replace memory- and processor-intensive sorting operations in queries that have ORDER
BY and GROUP BY clauses. This discussion focuses on the benefits of indexes in implementing SQL
WHERE clauses that filter query results.

There are several methods for constructing indexesin SQL:
* PRIMARY KEY column attribute

* UNIQUE or ASSUME UNIQUE column attribute

* PRIMARY KEY table constraint

* UNIQUE or ASSUME UNIQUE table constraint
 CREATE INDEX statement

Any of these methods can be used to define a“UNIQUE” index on asingle column. The table constraints
and CREATE INDEX statements can aso define a “UNIQUE” index on multiple columns or on
expressions that use one or more columns. The CREATE INDEX statement can be used to construct a
non-UNIQUE index on one or more columns or expressions.

All examplesin this chapter describe indexes asif they were created by the CREATE INDEX statement,
but the discussion applies generally to indexes defined using any of these methods.

4.3. The Goals for Effective Indexing

The goals of effective indexing are to:

* Eliminate unused indexes

» Minimize redundancy (memory use and overhead for writes) among overlapping indexes on atable
* Minimize sequential scans of large numbers of rows

Sequential filtering always occurs when rows are accessed without the benefit of an index. Thisisknown
asasequential scan. Sequential filtering can also occur on an indexed scan when there are morefiltersin
the query than are covered by the index. The cost of sequential filtering is based on several factors. One
factor is the number of filters being applied to each row. A major factor is the number of rows to which
the filters must be applied.

The intent of an index is to use a more streamlined “lookup” agorithm to produce a small set of filtered
rows, eliminating the need to sequentially apply (as many) filters to (as many) rows.

Since there are trade-offs and limitations involved in defining indexes, indexes may not provide complete
coveragefor all of thefiltersinaquery. If any filtersare not covered by an index, they must be sequentially
applied. The cost of this action istypically reduced compared to a sequential scan of the data because the
index reduces the two major contributing factors: the number of remaining, uncovered filtersto apply, and
the number of rows to which they must be applied.

The lookup algorithm used by an index is typically much more efficient than sequential application for
the same set of filters and rows, but it does not have zero cost. It also slightly complicates the process

20

Using Indexes Effectively

of sequentially applying any remaining filters to the remaining rows. In fact, the worst-case scenario for
query filter performance is when an index's lookup algorithm is employed but fails to cover most of a
query'sfiltersand failsto €liminate most of thetable€'srows. This case can perform significantly worse than
a sequential scan query that uses no index at all and applies all of itsfilters sequentially. This possibility
callsfor the elimination of ineffective indexes from a database.

Anideal set of index definitions minimizes the number of times that any filter is sequentialy applied to
any row in any query over the life of the database system. It accomplishes this with a minimum number
of indexes, each of minimum complexity, to reduce persistent memory and data write computation costs.

4.4. How Indexes Work

A key insight into defining indexes is determining which of the filters in a query can be “covered” by a
given index. Filters and combinations of filters qualify for coverage based on different criteria.

Each "scan" in aquery, that is, each argument to a FROM clause that is not a subquery, can use up to one
index defined on itstable. When atabl e defines multiple indexes on the same tabl e, these indexes compete
in the query planner for the mission of controlling each scan in each query that uses the table. The query
planner uses several criteria to evaluate which one of the table's indexes that cover one or more filtersin
the query isthe most likely to be the most efficient.

When indexing a single column, asin "CREATE INDEX INDEX_OF _X_A ON X(A);", acovered filter
can be any of the following:

* "A <op> <constant>", where <op> can be any of "=, <, >, <=, or >="
* "A BETWEEN <constant1> AND <constant2>"
* "A IN <constant-list>"

* A gpecia case of "A LIKE <string-pattern>" where <string-pattern> contains a fixed prefix followed
by awild-card character

Here, <constant>, <constant1>, and <constant2> can be actual literal constantslike 1.0 or 'ABC' or they
can be placeholders (?) that resolve to constants at runtime. <constant-list> can be a list of literals or
literals and parameters like ('ABC', 'BAC', 'BCA', 'ACB', 'CBA', ' BAC) or (1, 2,3,) or (22,22 ?)
or a single vector-valued placeholder. Each of these "constants' can also be an expression of constants,
such as ((1024* 1024)-1).

Depending onthe order inwhich tablesare scanned in aquery, called thejoin order, acoveredfilter canalso
be"A <op> <column>" where <column> isacolumn from another tablein the query or any expression of
acolumn or columnsfrom another table and possibly constants, likeB or (B || C) or SUBSTR(BJ||C,1,4).

Thejoin order dependency works like this: if you had two tables indexed on column A and your query is
as follows, only one table could be indexed:

SELECT * FROM X, Y WHERE X. A = Y. A and X.B = ?;

Thefirst one to be scanned would have to use a sequential table scan. If you also had an index on X.B, X
could be index-scanned on B and Y could then be index-scanned on A, so atable scan would be avoided.

The availability of indexes that cover the scans of a query have adirect effect on the planners selection of
the join order for a query. In this case, the planner would reject the option of scanning Y first, since that
would mean one more sequential scan and one fewer index scan, and the planner prefers moreindex scans
whenever possible on the assumption that index scans are more efficient.

21

Using Indexes Effectively

When creating an index containing multiple columns, asin "CREATE INDEX INDEX_OF X A B ON
X(A, B);", a covered filter can be any of the forms listed above for coverage by a simpler index “ON
X(A)", regardless of the presence of afilter on B — thisis used to advantage when columns are added to
an index to lower its cardinality, as discussed below.

A multi-column index “ON X(A, B) can be used more effectively in queries with a combination of filters
that includes afilter on A and afilter on B. To enable the more effective filtering, the first filter or prefix
filter on A must specifically have the form of "A = ..." or "A IN ..." — possibly involving column(s) of
other tables, depending on join order — while the filter on B can be any form from the longer list of
covered filters, above.

A specific exception to thisruleisthat afilter of theform "B IN ..." does not improve the effectiveness of
afilter of theform"A IN ...", but that samefilter "B IN ..." can be used with afilter of the specificform"A
= ...". In short, each index is restricted to applying to only one “IN” filter per query. So, when the index
iscovering “A IN ...”, it will refuseto cover the“B IN ...” filter.

This extends to indexes on greater numbers of columns, so an index "ON X (A, B, C)" can generally be
used for al of the filters and filter combinations described above using A or using A and B. It can be
used still more effectively on a combination of prefix filters like "A = ... " (or "A IN ...") AND "B
=.." (or"BIN..") with an additiona filter on C — but again, only the first "IN" filter improves the
index effectiveness, and other “IN” filters are not covered.

When determining whether afilter can be covered asthefirst or prefix filter of anindex (first or second filter
of an index on three or more columns, etc.), the ordering of the filters always follows the ordering of the
columnsintheindex definition. So, “CREATE INDEX INDEX_ON_X_A_B ON X(A, B)” issignificantly
different from “CREATE INDEX INDEX_ON_X B_A ON X(B, A)". In contrast, the orientation of the
filters as expressed in each query does not matter at al, so "A = 1 and B > 10" has the same effect on
indexing as"10 < B and A = 1" etc. Thefilter “A = 1" is considered the “first” filter in both cases when

theindex is“ON (A, B)” because A isfirst.

Also, other arbitrary filters can be combined in a query with “AND” without disqualifying the covered
filters; these additional filters simply add (reduced) sequential filtering cost to the index scan.

But atop-level OR conditionlike"A =0OR A > 100" will disqualify al filtersand will not use any index.

A general pre-condition of a query'sfilters eligible for coverage by a multi-column index is that the first
key in the index must be filtered. So, if aquery had no filter at all on A, it could not use any of the above
indexes, regardless of thefilterson B and/or on C. Thisisthe condition that can cause table scansiif there
are not enough indexes, or if the indexes or queries are not carefully matched.

This implies that carelessly adding columns to the start of an already useful index's list can make it less
useful and applicable to fewer queries. Conversely, adding columns to the end of an already useful index
(rather than to the beginning) is more likely to make the index just as applicable but more effective in
eliminating sequential filtering. Adding to the middle of the list can cause an index to become either more
or less effective for the queries to which it applies. Any such change should be tested by reviewing the
schema report and/or by benchmarking the affected queries. Optimal index use and query performance
may be achieved either with the original definition of theindex, with the changed definition, or by defining
two indexes.

4.5. Summary

To recap, here are the best practices for defining indexesin VoltDB:

» Avoid indexes that have a column list that is simply a prefix of another index's column list. The index
with the longer column list will usually serve the same queries as the shorter one. If the primary key

22

Using Indexes Effectively

of table X is (A, B, C), then an index on (A, B) is of little use. An index on (B, C) may be of usein
this scenario or it may be more effective to define the primary key as (B, C, A) — if B islikely to be
filtered in queries where A is not equality-filtered.

Avoid "low-cardinality" indexes — An index defined solely on a column that only has a few distinct
values is usually not very effective. Because of its large number of duplicate values, it does little to
narrow the set of rows to be sequentialy filtered by other filters in the query. Such an index can
sometimes cause the planner to fail to select amore effectiveindex for aquery or even amore efficient
sequential scan. One way to increase index effectiveness of low cardinality indexes is to add other
filtered columnsto the index, keeping in mind that the effectiveness of an index for a query "tops out"
at the first column that has an inequality filter — or before the second column that has an IN filter.

When deciding how to order columns within an index (or primary key or unique constraint) definition,
columnsthat are more likely to befiltered with an exact equality (such as A = ?), should belisted before
columns that tend to be range-filtered (B <= ?). Queries that are run the most often or that benefit the
most from indexing (perhaps because they lack filters that can be covered by other indexes) should
weigh more heavily in this decision.

In some cases, with aroughly equal mix between queriesusing formslike"WHEREA =?AND B <=7?"
and other queriesusing formslike"WHERE A >? AND B =7?', it may be worthwhile to define indexes
on both permutations — on X(A, B ...) and on X(B, A ...). Otherwise, when two or more columnsin
an index tend to both get equality filtered in combination, it is generally better to list a column first if
it also tends to be filtered (without the other) in other queries. A possible exception to thisruleiswhen
the column has low cardinality (to avoid the ineffective use of the index).

Placing the low-cardinality column later in the index's list prevents the index from being applied as a
low-cardinality indexed filter and favors the selection of a more effective index or sequential scan.

Any non-unique filter that is listed in the schema report as having no procedures using it is a candidate
for elimination. But first, it may make senseto look for queries that would be expected to use the index
and determine what they are using instead for scans on the table. It may be that the index chosen by the
planner isnot actually as effective and that index may be the better candidate for elimination. Also, note
that indexes that are only used to support recalculation of min and max values in materialized views
may be erroneously reported as unused.

Index optimization isbest accomplished iteratively, eliminating or tuning an index on atable and seeing
its effect on statements before making other changes to other competing indexes.

23

Chapter 5. Creating Flexible Schemas
With JSON

A major part of any relational database isthe schema: the structure of the data as defined by the tables and
columns. It is possible to change the schema when necessary. However, at any given time, each table has
a set number of columns, each with a specific name and datatype.

It is possible to store unstructured data in a relational database as a "blob" using a VARBINARY or
VARCHAR column. However, the database has no way to operate on your data effectively beyond simply
storing and retrieving it.

Sometimes dataisnot as strictly organized asarelational database schemarequires, but doeshave structure
withinit. For example, atable may have aset of properties, each with adifferent name and matching value.
But not all records use the same set of properties.

JSON (JavaScript Object Notation) is a light-weight data interchange format that lets you describe data
structures on the fly. JISON-encoded strings are composed of a hierarchy of key-value pairs that can be
as simple or as complex as needed. More importantly, the actual structure of the object is determined at
run-time and does not need to be predefined.

VoltDB gives you the ability to mix the efficiency of the relational schema with the flexibility of JSON.
By using JISON-encoded columnswith VoltDB SQL functions and index capabilities, you can work more
naturally with JSON data while maintaining the efficiency and transactional consistency of a relational
database.

5.1. Using JSON Data Structures as VoltDB
Content

JSON processing is easiest to understand by example. For the purposes of this chapter, we will use the
example of asingle sign-on (SSO) application using VoltDB. The application needsto store login sessions
for multiple online sites under a common username. Each login session must manage different properties
describing the state of the session, where properties can vary from simple dataval uesto more complex data
structures. Additionally, future enhancements to the application may change what properties are required.
Because of the variability of the data, a good strategy is to store this session information as JSON data
structures.

To store JSON data in VoltDB, you declare the storage as a standard VARCHAR column, large enough
to contain the maximum expected length of the JSON data. For example, the following table declaration
includes aVARCHAR column named session_info with a maximum length of 2048 characters.

CREATE TABLE user_session_table (

user name VARCHAR(200) UNI QUE NOT NULL,
passwor d VARCHAR(100) NOT NULL,

gl obal _session_id VARCHAR(200) ASSUMEUNI QUE NOT NULL,
| ast _accessed TI MESTAMP,

session_info VARCHAR(2048)

)
PARTI TI ON TABLE user_sessi on_tabl e ON COLUW user nane;

The JSON datais stored as text and it is up to your application to perform the conversion from an in-
memory structure to the textual representation. For example, the V oltDB softwarekit includes an example,

24

Creating Flexible
Schemas With JSON

json-sessions, that provides aversion of the application described here, which uses an open source package
from Google called GSON to convert from plain old Java objects (POJOs) to text and vice versa.

Once you have a text representation of the JSON object, you insert it into the database column using
standard SQL syntax. For example:

I NSERT | NTO user _session_table (usernane, password,
gl obal _session_id,
| ast _accessed, session_info)
VALUES (?, 2, ?, ?, ?);

Note that VoltDB does not validate that the text being inserted into the VARCHAR column is properly
encoded JSON. Validation of the encoding occurs when accessing such columns using the JISON-specific
functions, described next.

5.2. Querying JSON Data

VoltDB provides four functions to help you interact effectively with JSON data stored in VARCHAR
columns. Each function takes a JSON-encoded text string as the first argument, followed by other
arguments required for the operation.

Function Description

ARRAY_ELEMENT (json, array-index) Returns the value of a specific element in a JSON
array.

ARRAY _LENGTH(json) Returns the number of elementsin a JSON array

FIELD(json, path-name) Returns the value of a specific field in a JSON
structure, wherethe field isidentified by path name.

SET_FIELD(json, path-name, new-value) Returnsa JSON structure where the specified field's
value is updated.

In the simple case where the JSON is aflat list of named fields, the FIEL D() function can extract the value
of one of thefields:

SELECT username, FIELD(session_info," website') AS url
FROM user _sessi on_t abl e WHERE user nane=?;

The FIELD() can also take a path name for more complex JSON structures. For example, if the properties
fieldisitself alist of named fields, you can drill down into the structure using a path, like so:

SELECT username, FIELD(session_info," website') AS url,
FI ELD(session_info, "' properties.last_login') AS last_login
FROM user _sessi on_t abl e WHERE user nane=?;

For structures containing arrays, you can use ARRAY _ELEMENT)() to extract a specific element from the
array by position. For example, the following SELECT statement extracts the first element from a JSSON
column named recent_history. (The array index is zero-based.)

SELECT user nane,
ARRAY_ELEMENT(recent _history, 0) AS npst_recent
FROM user _hi st ory WHERE user name=?;

Finally, you can nest the functions to perform more complex queries. Say rather than being a separate
column, the named array recent_history is a subelement of the propertiesfield in the session_info column,
the following query retrieves the last element from the recent_history array:

25

Creating Flexible
Schemas With JSON

SELECT user nane,
ARRAY_ELEMENT(FI ELD(session_info,"' properties.recent_history'),
ARRAY_LENGTH(FI ELD(sessi on_i nfo, ' properties.recent_history'))-1)
AS ol dest
FROM user _sessi on_t abl e WHERE user nane=?;

Note that, as mentioned earlier, VoltDB does not validate the correctness of the JSON-encoded string
on input into aVARCHAR column. Instead, VoltDB validates the data when one of the JISON functions
attemptsto parse the encoded string. If the datais not avalid JISON-encoded string, the function will throw
an exception at run-time and rollback the transaction.

5.3. Updating JSON Data

The JSON functions can not only query the JSON-encoded data, they let you modify a JSON-encoded
string in place. The SET_FIELD() function takes JSON data as input and returns the same JSON structure
but with the specified field updated. For example, using the user_session_table described in the previous
section, it is possible to update the last_login property in the JISON column session_info with a single
SQL statement:

UPDATE user _session_tabl e
SET session_info = SET_FIELD(session_info,"' properties.last_login',?)
WHERE user nane=? AND gl obal session_i d=7?;

Again, the JSON functions can be nested to perform more complex operations. In the following example,
the UPDATE statement takes afull JSON encoded-string asinput for the session_info column, but merges
it with the properties value from the existing record.

CREATE PROCEDURE nerge_properties AS
PARTI TI ON ON TABLE user _session_tabl e COLUW user nane
AS
UPDATE user _session_tabl e
SET session_inf = SET _FIELD(?, ' properties',
FI ELD(sessi on_i nfo, ' properties'))
VWHERE user nanme=?;

5.4. Indexing JSON Fields

The JSON functions perform significant string processing to encode and decode the JSON structures. If
the table does not have appropriate indexes, the extra processing required for JSON columns added to the
need to scan al of the records in the table can quickly result in undesirable latency. The solution is to
index the pertinent JSON operations.

To speed up query execution for JSON queries, you can define an index on the commonly accessed
fields, including the commonly used function instances. For example, the following index definitions can
significantly improve the execution time for queries described in the previous sections:

CREATE | NDEX session_i ndex_l ast_l ogin
ON user_session_table (
field(session_info, 'properties.last_login'),
user name

)

CREATE | NDEX session_i ndex_hi story
ON user_session_table (

26

Creating Flexible
Schemas With JSON

ARRAY_ELEMENT(FI ELD(session_info," properties.recent_history'),
ARRAY_LENGTH(FI ELD(sessi on_i nfo, ' properties.recent_history'))-1),
user nane

)

These arefully functional SQL indexes. Whenever you create or update arecord in the user_session_table
table, VoltDB executes the JSON functions and stores the result inside the index. When you query by that
same function in the future, VoltDB uses the index avoids both the table scan and repeating the JSON
string processing.

5.5. Summary: Using JSON in VoltDB

One of the major benefits of encoding data as JSON is that you do not have to predefine what structure
or shape the data has. Further, the shape of the data can vary from one row to the next. The schema for
JSON columns are defined by the data itself, rather than having to define the structure using SQL ahead
of time. If anew field is needed, you simply create the appropriate data object in whatever programming
language you are using, serialize it to JSON, and store it in VoltDB. This avoids the need to change the
database schema anytime these temporary data structures change.

On the other hand, when using JSON columns you should be aware of the following drawbacks:

 Your application must be intelligent enough to interpret the various structures that appear in the JSON
columns.

» Evaluating JSON datausing the VoltDB JSON functionsrequires additional processing overhead. JSON
is excellent for managing fluid data structures, but it is always significantly faster to used a predefined
SQL schemawhen possible.

* You must be sensitive to when indexes are needed, should query patterns or the data structures change.
This may, for example, require you to add (or modify) indexes based on the existence of new JSON
fields.

Another point of note is that there is a size limit for JSON values. In VoltDB, the VARCHAR columns
used to store JSON values are limited to one megabyte (1048576 bytes). JSON support |ets you augment
the existing relational model within VoltDB. However, it is not intended or appropriate as a replacement
for pure blob-oriented document stores.

27

Chapter 6. Creating Geospatial
Applications

VoltDB provides standard datatypes for storing common numeric and textual content. It also provides
support for JISON within VARCHAR columns to handle semi-structured content, as described in the
preceding chapter. But not all application data can be efficiently managed using just the standard datatypes.

One example of an application area requiring special handling is geospatial data — that is, information
about locations and regions on the earth. It is possible to store geospatial data using standard datatypes,
for example, storing longitude and latitude as two separate FLOAT columns. However, by storing the data
in generic datatype columns the information loses its context. For example, using separate columnsit is
impossibleto tell how far apart two points are or whether those points are part of alarger geometric shape.

To simplify the use of geospatial information, VoltDB includes two geospatial datatypes and a number of
functions that help you evaluate and operate on that data. This chapter describes the new datatypes and
provides basic information on how to input and use that datain stored procedures and SQL queries.

6.1. The Geospatial Datatypes

VoltDB supports two geospatial datatypes:
* GEOGRAPHY
¢ GEOGRAPHY_POINT

The GEOGRAPHY datatype supports geographical regions defined as polygons. The
GEOGRAPHY _POINT datatype defines asingle point using apair of longitude and latitude values. Both
datatypes can be represented astext in an industry format known as Well Known Text (WKT) defined by
the Open Geospatial Consortium (OGC). VoltDB provides functions for converting WKT representations
to both GEOGRAPHY and GEOGRPAHY_POINT values. WKT is aso how values of these types are
displayed by sglcmd and the VoltDB Management Center. Since GEOGRAPHY_POINT is the simpler
of the two points, we will discussit first.

6.1.1. The GEOGRAPHY_POINT Datatype

A GEOGRAPHY _POINT represents a single point on earth as defined by alongitude and latitude value.
The WKT representation of a GEOGRAPHY _POINT valueis the following:

POINT (longitude-value latitude-value)

The longitude is a floating point value between 180 and -180 inclusive. The latitude is a floating point
value between 90 and -90 inclusive.

6.1.2. The GEOGRAPHY Datatype

The GEOGRAPHY datatype defines a bounded region of the earth represented by one or more polygons.
The first polygon, or ring, describes the outer boundary of the region. Subsequent rings within the WKT
representation describe "holes" within the outer region. So, for example, the following shaded region is
described by three rings:

» Theouter ring, A

28

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/

Creating Geospatial Applications

e Twoinnerrings, Band C

Inthe WKT representation, the outer ring must be listed first, with the verticeslisted in counter-clockwise
order (e.g. A5, A4, A3, A2, Al). Theinner rings, if any, arelisted next with the verticesin clockwise order
(e.g. B1, B2, B3). Thelines of the rings must not cross or overlap and the description of each ring must
list the starting vertex twice: as both the first and last vertex.

Note that, although the individual rings must not cross and vertices must be in the correct order for the
geospatial functions to generate valid results, the correctness of the polygon is not checked by VoltDB
when the GEOGRAPHY dataisinserted. If you are unsure of the correctness of the originating data, you
can use the ISVALID() and ISINVALIDREASON() functions to validate GEOGRAPHY values within

aSQL query.

The WKT representation of a GEOGRAPHY value is the following, where each vertex-list is a comma-
separated list of longitude and latitude values describing a single ring:

POLYGON ((vertex-list) [, (vertex-list)]...)

For example, the simplest polygon, which consists of a single outer ring of three vertices, could be
represented like this:

POLYGON ((1.5 3.0, 0.0 0.0, 3.00.0, 1.53.0))
For a polygon with two inner rings, the WKT might look like the following:

, 0.0
5
5

0.0, 3.
0.5, 0.
0.5, 1.

1.
, 2.

O O O
P w
[N eNe]
o1 o1 O
coo
o1 o1 O
NSRS
O O O
P w
o oo
N

(1.
(1.
(2.

6.1.3. Sizing GEOGRAPHY Columns

GEOGRAPHY polygons, unlike GEOGRAPHY_POINT values, do not have a fixed size. The memory
required to store a GEOGRAPHY column varies depending on the number of rings and the number
of vertices in each ring. In this way, GEOGRAPHY columns are treated much like VARCHAR and
VARBINARY columns when VoltDB manages their allocation and storage.

For convenience, VoltDB provides adefault maximum sizefor GEOGRAPHY columns. So if you declare
the column without a specific size, it is assigned a maximum size of 32 kilobytes (32768 bytes):

CREATE TABLE Country (
Narme VARCHAR(32),
Bor der GEOGRAPHY

29

Creating Geospatial Applications

6.1.4.

)

However, for very large polygons, this default size may be too small. Or, if you have GEOGRAPHY
columns mixed with large VARCHAR columns in a single table, the default may be too large because
there is atwo megabyte limit for the sum of the columnsin asingle table.

You can specify your own maximum size for a GEOGRAPHY column, in bytes, by including the
maximum size in parentheses after the datatype keyword, the same way you do for VARCHAR columns.
For example, the following CREATE TABLE statement defines the maximum size of the border column
as 1024 bytes:

CREATE TABLE Country (
Name VARCHAR(32),
Bor der GEOGRAPHY(1024)

)
To determine how much space is required to store any polygon, use the following cal cul ation:
40 bytesfor the polygon

e 43 bytesfor every ring

e 24 bytesfor every vertex

Note that when counting the vertices, athough the starting vertex must be listed twice in the WKT
representation, it is only stored once and therefore only counted once in the memory allocation. For
example, the memory calculation for a polygon with an outer ring with 10 vertices and 3 inner rings with
8 vertices each would be the following:

40 bytes
172 bytes (43 X 4 rings)
816 bytes (24 X 34 total vertices)

1028 bytes total

The largest maximum size you can specify for a GEOGRAPHY column, or any column in VoltDB, is
one megabyte.

How Geospatial Values are Interpreted

The earth itself is not uniformly round. However, measurements accurate enough for most applications
can be achieved by assuming a perfect sphere and mapping the longitude and latitude coordinates onto
that sphere. For calculating distances between locations and areas of regions VoltDB assumes a sphere
with a radius matching the mean radius of the earth, or 6,371,008.8 meters. Although an approximation,
thismodel provides distance cal cul ations accurate to within three tenths of a percent (0.3%) of other, more
elaborate geospatial models. What this means is, when calculating the distance between two points that
are a kilometer apart, the answer computed by the DISTANCE() function may vary up to 3 meters from
calculations using other techniques.

6.2. Entering Geospatial Data

Asmentioned earlier, Well Known Text (WKT) isthe standard presentation V oltDB usesfor ingesting and
reporting on geospatial data. However, you cannot insert WKT text strings directly as geospatial values.
Instead, VoltDB provides SQL functions and Java classes and methods for translating from WKT to the
internal geospatial values.

30

Creating Geospatial Applications

In SQL statements you can use the POINTFROMTEXT() and POLY GONFROMTEXT() functions to
generate the appropriate geospatial datatypes from WKT. For example, the following SQL statement
inserts the geographic location of New Y ork City into the GEOGRAPHY _POINT column location:

| NSERT | NTO CI TI ES (name, |ocation) VALUES
("New York GCity', PO NTFROMIEXT(' PO NT(-74.0059 40.7127)"');

In a Java stored procedure you can generate and store a GEOGRAPHY or GEOGRAPHY POINT
value from WKT using the classes Geogr aphyVal ue and Geogr aphyPoi nt Val ue and the method
. fromKT() . For example, the following stored procedure takes two Java String objects, converts them
to GEOGRAPHY and GEOGRAPHY _POINT values, then inserts them into arecord via placeholdersin
the SQL statement:

i mport org.vol tdb. *;
i mport org.vol tdb.types. Geogr aphyVal ue;
i mport org.vol tdb.types. GeographyPoi nt Val ue;

public class InsertGeo extends VoltProcedure {

public final SQStnt insertrec = new SQLStnt (
"1 NSERT | NTO regi on VALUES (?,?,?);");

public Vol tTable[] run(
String nane, String poly, String point)
t hrows Vol t Abort Exception {

CGeogr aphyVval ue g = CGeogr aphyVal ue. f r omM/KT(pol y) ;
CGeogr aphyPoi nt Val ue p = Geogr aphyPoi nt Val ue. f r omMKT(poi nt) ;

vol t QueueSQL(insertrec, name, p, Q);
return vol t Execut eSQL();

}

A third option is to use the .fromWKT() method to create instances of GeographyVaue and
GeographyPointValuein the client application and passthe datato the stored procedure as native geospatial
types.

When retrieving geospatial data from the database, the ASTEXT() SQL function converts from a
GEOGRAPHY or GEOGRAPHY_POINT value to its textual representation. (You can also use the
CAST(value ASVARCHAR) function). In astored procedure or Java client application, you can use the
.toString() method of the Geogr aphyVal ue or Geogr aphyPoi nt Val ue class.

6.3. Working With Geospatial Data

In addition to the classes, methods, and functions to insert and extract geospatial data from the database,
VoltDB provides other SQL functionsto help you manipulate the data. The functions fall into three main
categories:

» Converting to and from WKT representations:

ASTEXT()
POLY GONFROMTEXT()
POINTFROMTEXT()

31

Creating Geospatial Applications

VALIDPOLY GONFROMTEXT()
» Performing geospatial calculations:

AREA()
CENTROID()
CONTAINS()
DISTANCE()
DWITHIN()
LATITUDE()
LONGITUDE()

» Analyzing the structure of aregion:

MAKEVALIDPOLY GON()
ISVALID()
ISINVALIDREASON()
NUMINTERIORRINGS()
NUMPOINTS()

The following sections provide examples of using these functions on both locations and regions.

6.3.1. Working With Locations

For geospatial locations, the data is often available as numeric values — longitude and latitude — rather
than as WKT. In this case, you need to convert the numeric datato WKT before converting and inserting
it asa GEOGRAPHY_POINT value.

For example, The VoltDB Tutorial uses datafrom the US Geographic Names Information Service (GNIS)
to create a database of geographic locations. The origina source data also includes the longitude and
latitude of those locations. So it is easy to modify the database schemato add alocation for each town:

CREATE TABLE towns (
t own VARCHAR(64),
state VARCHAR(2),
state_num TI NYI NT NOT NULL,
county VARCHAR(64),
county_num SMALLI NT NOT NULL,
| ocati on GEOGRAPHY_ PO NT,
el evation | NTEGER

)

However, theincoming dataincludestwo floating point values rather than a GEOGRAPHY _POINT value
or WKT. One solutionisto create asimple stored procedure to perform the conversion to WKT and insert
the record using the POINTFROMTEXT() function:

public class Insert Town extends VoltProcedure {

public final SQStnt insertrec = new SQLStnt (
"1 NSERT | NTO TOAWNS VALUES (7?2, ?,?,?,?, PO NTFROMIEXT(?),?);"
);

public VoltTable[] run(String t, String s, byte sn,
String c, short cn,
doubl e I atitude, double |ongitude,

32

https://docs.voltdb.com/tutorial
http://geonames.usgs.gov/domestic/download_data.htm

Creating Geospatial Applications

[ong e)
t hrows Vol t Abort Exception {
String wkt = "PONT(" +
String.valueO (longitude) + " " +
String.valueOr(latitude) + ")";
vol t QueueSQL(insertrec, t,s,sn, ¢, cn, wkt, e);
return vol t Execut eSQL();

}

Once the data is imported into the database, it is possible to use the geospatial functions to perform
meaningful queries on the locations, such as determining which town is closest to a specific location (such
as acell phone user):

SELECT town, state FROM TOMNS
ORDER BY DI STANCE(| ocati on, CAST(? AS GEOGRAPHY_ PO NT))
ASC LIMT 1;

Or which town is furthest north:

SELECT town, state FROM TOMNNS ORDER BY LATI TUDE(I ocation) DESC LIMT 1;

6.3.2. Working With Regions

The textua representation for regions, or polygons, are not as easily constructed as geographic points.
Therefore if you do not have region data already in WKT, your client application will need to generate
WKT from whatever source data you are using.

Once you have the WKT representation, you can insert the data using a simple stored procedure similar
to the example given above for locations. Since the data is aready in WKT, you can even define the
stored procedure using a CREATE PROCEDURE AS statement. The following example defines atable
for storing information about the names and regions of national parks. It also defines the insert procedure
for ingesting records from existing WKT data:

CREATE TABLE parks (
par k VARCHAR(64),
par k_code VARCHAR(2),
bor der GEOGRAPHY
);
CREATE PROCEDURE | nsert Park AS
| NSERT | NTO parks VALUES (?,?, POLYGONFROMIEXT(?));

Asmentioned before, VoltDB does not validate the structure of the GEOGRAPHY polygon on input. So,
if you are not positive the WKT representation meets the rules for a valid polygon, you should use the
ISVALID() function onthe GEOGRAPHY valuebefore or after insertion to verify that your dataiscorrect.
For example, the following SQL statement usesthe ISYALID() and ISINVALIDREASON() functionsto
report on all invalid park regions and the reason for the exception:

SELECT park, park_code, | SI NVALI DREASON(bor der)
FROM Par ks WHERE NOT | SVALI D(border) ORDER BY park;

Alternately, you can use the VALIDPOLGYONFROMTEXT() function which combines the
POLYGONFROMTEXT() and ISVALID() functions into a single function, ensuring that only valid
polygons are generated. The preceding InsertPark can be rewritten to validate the incoming data like so:

CREATE PROCEDURE | nsertPark AS

33

Creating Geospatial Applications

| NSERT | NTO parks VALUES (?,?, VALI DPOLYGONFROMIEXT(?));

Of course, the rewritten procedure will take incrementally longer because it performs both
the conversion and validation. However, it performs these functions in a single step. The
VALIDPOLY GONFROMTEXT () function will aso correct simple errorsin the WKT input. Specificaly,
it will correct any rings where the vertices are listed in the wrong direction.

Once you know your GEOGRAPHY datais valid, you can use the geospatial SQL functions to perform
meaningful queries on the data. (If the polygons are not valid, the geospatial functions will not generate
an error but will also not produce meaningful results.) The functions that perform calculations on
GEOGRAPHY values are;

e AREA() —the areaof aregion

CENTROID() — the geographic center point of aregion

CONTAINS() — Whether aregion contains a given point

DISTANCE() — distance between a point and aregion (or between two points)

For example, thefollowing SQL queriesdeterminethethreelargest parks, what parksare closest to agiven
town, and what towns are contained with the region of a given park:

SELECT park, AREA(border) FROM Parks
ORDER BY AREA(border) DESC LIMT 3;

SELECT p. park, DI STANCE(p. border,t.locati on)
FROM parks AS P, towns AS T WHERE t.town="?
ORDER BY DI STANCE(p. border,t.location) ASC LIMT 5;

SELECT t.town FROM parks AS P, towns AS T
VWHERE p. par k=? AND CONTAI NS(p. border,t. | ocation);

Chapter 7. Creating Custom Importers,
Exporters, and Formatters

VoltDB includes built-in export and import connectors for a number of standard formats, such as CSV
files, IDBC, Kafka topics, and so on. If you have a data source or destination not currently covered by
connectors provided by VoltDB, you could write acustom application to perform thetrand ation. However,
you would then need to manually coordinate the starting and stopping of your application with the starting
and stopping of the database.

A better approach is to create a custom import or export connector. Custom connectors run within
the VoltDB process and use the standard mechanisms in VoltDB for synchronizing the running of the
connector with the database itself. Y ou write custom connectors as Java classes, packaged in a JAR file,
which VoltDB can access at runtime. This chapter provides instructions and sample code for writing,
installing, and configuring custom export and import connectors. It aso describes how to write custom
formatters that can be used to interpret the input coming from an import connector.

7.1. Writing a Custom Exporter

An export connector, known internally as an ExportClient, is a Java class that receives blocks of row data
when dataisinserted into a stream within the database. The export connector is responsible for formatting
and passing those rows to the downstream export target. A sample export client can be found onlinein the
VoltDB github repository at following location.

https://gist.github.com/voltgister/bdf 935b49647c988934 7#fil e-custom-export2-java
The following sections use a similar example to describe:

» The Structure and Workflow of the Export Client

» How to Use Custom Properties to Configure the Client

» How to Compile and Install the Client

» How to Configure the Export Client

7.1.1. The Structure and Workflow of the Export Client

VoltDB passes data to the export client in blocks that are roughly 2MB in size but do not align with
transactions. A block is guaranteed to contain complete rows — that is, no single SQL INSERT to an
export stream is split across blocks. The handoff from theinternal VoltDB producer to the custom export
client follows a simple pattern:

producer -> client.onBl ockStart
foreach row in bl ock:

producer -> client.processRow
producer -> client.onBl ockConpletion

Each time the pattern executes, it runs within a single thread. Therefore, it is not necessary
to synchronize accesses to the data structures used in client.onBlockStart, client.processRow, and
client.onBlockCompl etion unless they are used in other threads as well.

For each row of data, the processRow() method is called. Within the method you decode the input and
then process the resulting column values. For example:

35

https://gist.github.com/voltgister/bdf935b49647c9889347#file-custom-export2-java

Creating Custom Importers,
Exporters, and Formatters

publ i c bool ean processRowi nt rowSi ze, byte[] rowData)

try {

t hrows RestartBl ockException {
/1 Process one row fromthe current bl ock
Export Rowbat a poj o = this.decodeRow r owDat a) ;
for (int i =0; i < pojo.values.length; i++) {

/1 do actual work .

}

} catch (1 CException e) {

7.1.2.

7.1.3.

Note that each row starts with six columns of metadata, including the transaction ID and timestamp. If you
do not need this information, you can skip the first six columns.

If the client fails at onBlockStart, processRow or onBlockCompletion, the export client must throw a
RestartBlockException to prevent VoltDB from acknowledging (ACKing) and dropping the export data
from its durability control. This point deserves repeating: if the custom ExportClient runs onBlockStart,
processRow and onBlockCompletion without throwing the correct exception, VVoltDB assumesthe datais
remotely durable and that the VVoltDB database can discard that export block.

The ExportClient must not return from onBlockCompletion until it ensures the downstream target
acknowledges receipt of the data. See getExecutor() in the sample export client for some further
commentary on correct thread handling.

How to Use Custom Properties to Configure the Client

Properties, set in the deployment file as part of the export configuration, let you pass information to the
export connector. For example, if the user needs to pass the export connector afile location or IP address
for the export target. What properties are necessary or supported is up to you as the author of the export
client to decide.

The properties specified in the deployment file are passed to the export client as a Properties object
argument to the configure() method every time the connector starts. That is, whenever the database
starts with the connector enabled or whenever the schema or deployment is modified (for example, by a
voltadmin update command).

The configure() method can either iterate over the Properties object or it can look for specific entries as
needed. For example:

public void configure(Properties config) throws Exception {

/1 Check for specific property val ue
i f config.containsKey("filename") ({
filenane = config.getProperty("fil enane");

}
}

How to Compile and Install the Client

Once your export client code is complete, you need to compile, package, and install the connector on the
appropriate VoltDB servers. Y ou compilethe export client like other Java methods. Be sureto include the
VoltDB server jar file in the classpath. For example, if VoltDB isinstalled in adirectory called voltdb in
your home directory, the command could be:

36

https://gist.github.com/voltgister/bdf935b49647c9889347#file-custom-export2-java

Creating Custom Importers,
Exporters, and Formatters

7.1.4.

$ javac -cp "$HOWE vol tdb/voltdb/*:./" -d obj \
org.vol tdb. exportclient/ MExportCient.java

After compiling the source code, you must package the resulting classinto a JAR file, like so:
$ jar cvf nyexportclient.jar -C obj

Finally you must install the JAR file in the lib/extension folder where VoltDB isinstalled on all servers
in the cluster that will be running the export client. For, example, if you are running a single node cluster
on the current node, where VoltDB has been installed as $HOM E/voltdb, you can copy the JAR file with
the following command:

$ cp nyexportclient.jar $HOVE/ vol tdb/li b/ extension/

How to Configure the Export Client

Once your custom export client is installed you can configure and start it. Custom export clients are
configured like any other export connector, by adding a <confi gur e> section to <export > in
the deployment file (or configuring it interactively in the VoltDB Management Center). For custom
clients, you declare the connector t ype as "custom” and add the expor t connect or cl ass attribute
specifying the connector's Java classpath. For example:

<export >
<configuration enabl ed="true" target="nyspecial" type="custont
export connectorcl ass="org. vol tdb. exportclient. \WExportClient" >
<property nane="fil enane">nmyexportfile.txt</property>
</ configuration>
</ export >

Any properties listed in the <conf i gur at i on> ("filename" in this example) are passed to the custom
export client as arguments to the configure() method, as described in Section 7.1.2, “How to Use Custom
Propertiesto Configure the Client”. See the chapter on "Importing and Exporting Live Data" in the Using
VoltDB manual for more information on configuring export connectors.

7.2. Writing a Custom Importer

An import connector is a set of Java classes that configure the connector and then iteratively retrieve data
from aremote source and passit into VVoltDB by invoking stored procedures. Unlike the export connector,
which is responsible for formatting the data between source and target, the VVoltDB import architecture
allows for the use a separate formatter to trandate the inbound data into a set of Java objects that can be
passed as parameters to a stored procedure.

Import connectors are packaged as OSGi (Open Service Gateway | nitiative) bundles, so they can be started
and stopped easily from within the server process. However, for the purposes of writing acustom importer,
VoltDB handles much of the OSGi infrastructure in the abstract classes associated with the import client.
As a result, your import connector only needs to provide some of the classes normally required for an
OSGi bundle. Specifically, acustom importer must provide the classes and methodsdescribedin Table 7.1,
“Structure of the Custom Importer”.

Table 7.1. Structure of the Custom Importer

Class M ethod Description

implementation of | class constructor

Importer Config getFormatterBuilder() Returns the FormatterBuilder method of the
specified format.

37

https://docs.voltdb.com/UsingVoltDB/ChapExport.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Creating Custom Importers,
Exporters, and Formatters

7.2.1.

Class Method Description
getResourcel D() Returns a unique resource ID for this
importer instance.
URI() Returns the URI for the current importer
instance.
extension of | create() Returns an instance of the Abstractlmporter
Abstractl mporter Factory implementation.
createl mporterConfigurationsReturns a map of configuration information.
getTypeName() Returns the name of the Abstractimporter

classasastring.

isimporterRunEverywhere() | Returns true or false.

extension of | getName() Returns the name of the Abstractlmporter
AbstractI mporter classasastring.
accept() Performs the actual data import. Should
check to seeif stop() has been called.
stop() Completes the import process.
URI() Returns the URI for the current importer
instance.

Having al the right partsin place is extremely important, since if the bundle is incomplete or incorrect,
the server process will crash when the importer starts. So the best way to create a new custom importer is
to take an existing example — including the associated ant build script — and modify it as needed. You
can find an example custom importer in the VoltDB public github repository at the following URL:

https://github.com/V oltDB/voltdb/tree/master/src/frontend/org/vol tdb/importclient/socket
The following sections describe:

» Writing the custom importer using Java

e Compiling, packaging, and installing the importer

» Configuring and running the importer

Designing and Coding a Custom Importer

One of the most important decisions you must make when planning your custom importer is whether to
run a single importer process for the cluster or to design a run-everywhere importer. A single importer
process ensures only one instance of the importer is running at any given time. That means on a cluster,
only one node will run the import connector process.

The following sections discuss run-everywhere vs. single process and managing the starting and stopping
of the import connector.

7.2.1.1. Run-Everywhere vs. Single Process

A run-everywhere import connector starts a separate import process on each node in the cluster. A run-
everywhere connector can improve performance since it distributes the work across the cluster. However,
it means that the connector must negotiate the distribution of the work to avoid importing duplicate copies
of the data.

38

https://github.com/VoltDB/voltdb/tree/master/src/frontend/org/voltdb/importclient/socket

Creating Custom Importers,
Exporters, and Formatters

Run-everywhere connectors are especially useful wheretheimport process usesa'push” model rather than
a"pull'. That is, if the connector opens a port and accepts data sent to the port, then the data source(s) can
proactively connect and "push" data to that port, making the data source responsible for the distribution
to the multiple servers of the VoltDB cluster.

You specify whether you are creating a single importer process or run-everywhere connector in the
islmporterRunEverywhere() method of the Importer class. If the method returns true, importer processes
are created on every server. |f the method returns false, only one importer processiis created at any given
time.

7.2.1.2. Managing the Starting and Stopping of the Import Process

7.2.2.

When the custom importer is enabled, the ImporterFactory create() method is invoked, which in turn
createsinstances of the ImporterConfig and Importer classes. The VoltDB import infrastructure then calls
the Importer accept() method for each importer process that is created.

The accept() method does the bulk of the work of iteratively fetching data from the appropriate sources,
calling the formatter to structure the content of each row, and invoking the appropriate stored procedure
to insert the data into the database. Two important points to keep in mind:

* If the accept() method fails for any reason of returns to the caller, the importer will stop until the next
timeitisinitialized. (That is, when the database restarts or is paused and resumed.)

» On each iteration, the accept() method should check to see if the close() method has been called, so it
can clean up any pending imports and then return to the caller.

Packaging and Installing a Custom Importer

Once the custom importer code is ready, you need to compile and package it as an OSGi-compliant JAR
file. There are a number of OSGi properties that need to be set in the JAR file manifest. So it is easiest
to use an ant build file to compile and package the files. The following is an excerpt from an example
build.xml file for a custom importer project:

<I-- Sinple build file to build socket streaminporter -->

<proj ect name="custoni nport"” basedi r="." defaul t="custom nporter">
<property nane='base.dir’ | ocation="." />

<property nane='bundl es. dir’ | ocati on="./bundles' />

<property nane='build.dir’ | ocation="./obj' />

<t arget name="buil dbundl e" depends="custom nporter"/>

<resources id="default.inports.resource">
<string>org. osgi.framework; versi on=" ;[1. 6, 2) " ; </ stri ng>
<string>org.vol tcore. network</string>
<string>org.voltdb.inporter</string>
<string>org.voltdb.client</string>
<string>org.voltdb.inporter.formatter</string>
<string>org. apache. | og4j </ string>
<string>org.slf4j</string>
<string>j sril66y</string>
<string>org.voltcore.utils</string>
<string>org.vol tcore.logging</string>
<string>com googl e_vol t pat ches. conmon. base</ stri ng>
<string>com googl e_vol t pat ches. conmon. col | ect </ stri ng>

39

Creating Custom Importers,
Exporters, and Formatters

<string>com googl e_vol t pat ches. conmon. net </ stri ng>

<stri ng>com googl e_vol t pat ches. conmon. i o</ stri ng>

<string>com googl e_vol t pat ches. conmon. util.concurrent</string>
</resources>

<pat hconvert property="default.inports”
refid="default.inports.resource" pathsep=","/>

<t arget name="custom nporter">

<l-- Conpile source files -->

[..]

<l-- Build OSG bundle -->
<antcal | target="o0sgi bundl e">
<par am nane="bundl e. nane" val ue="nycust om nporter"/>
<par am nane="activator" val ue="M/Cust om nporter Factory"/>
<par am nane="bundl| e. di spl aynane" val ue="M/Cust om nporter”/>
<par am nane="i ncl ude. cl asspattern” val ue="mycustom nporter/*.class"/>
</antcal |l >
</target>

<t arget nanme="osgi bundl e">
<nmkdir dir="${bundl es.dir}" />
<jar destfile="${bundles.dir}//${bundl e.name}.jar" basedir="${build.dir}">
<i ncl ude name="${i ncl ude. cl asspattern}"/>
<mani f est >
<attribute name="Bundl e- Activator" val ue="${activator}" />
<attribute name="Bundl e- Mani f est Ver si on" val ue="2" />
<attribute nanme="Bundl e- Nane"
val ue="${bundl e. di spl aynane} OSG Bundle" />
<attribute name="Bundl e- Synbol i cNane"
val ue="${bundl e. di spl aynanme}" />
<attribute name="Bundl e-Versi on" value="1.0.0" />
<attribute name="Dynam cl nport - Package" val ue="*" />
<attribute nanme="|nport-Package" val ue="${default.inmports}" />
</ mani f est >
</jar>
</target>
</ proj ect >

Once you create the OSGi bundle, you install the custom importer by copying it to the bundl es folder
inside the root directory of the VoltDB installation on every server in the cluster. For example, if VoltDB
isinstalled in/ opt / vol t db, copy your custom importer JAR fileto/ opt / vol t db/ bundl es/ .

7.2.3. Configuring and Running a Custom Importer

Once the custom importer is installed on the VoltDB servers, you can configure and start the importer
using the database configuration file. Y ou can configure import either before the database starts or after
the database is running using the voltadmin update command.

In the configuration use the <i nport > and <confi gur ati on> elements to declare your custom
importer. Specify thet ype as"custom" and identify the custom importer bundle inthe nodul e attribute
specifying the name of the JAR file. For example:

40

Creating Custom Importers,
Exporters, and Formatters

<i nport >
<conf

[

<i nport >
<conf
<pr

<pr

</ conf
</i nmport

i guration type="custont nodul e="mycustom nporter.jar">

]

If the custom importer requires additional information, you can provide it in properties passed to the
ImporterConfig class. For example:

i guration type="custonm' nodul e="mycustoni nporter.jar">

operty nane="dat asour ce" >ny. dat a. sour ce</ property>
operty nane="ti meout" >5nx/ property>

i guration>

>

As soon as the configuration is enabled, the import processes will be initialized and the custom importer
accept() method invoked by the VoltDB import infrastructure.

7.3. Writing a Custom Formatter

A formatter is amodule that takes arow of data received by an import connector, interprets the contents,
and trandatesit into individual column values. The default formatter that is provided with VoltDB parses
comma-separated values (CSV) data. However, if the datayou are importing isin a different format, you
can write a custom formatter to perform this tranglation step.

Y ou provide a custom formatter as an OSGi (Open Service Gateway Initiative) bundle. However, much
of the standard work of an OSGi bundle is handled by the VoltDB import framework. So you only need
to provide selected components as described in the following sections.

Note

Custom formatters can be used with both custom and built-in import connectors and with the
standal one kafkal oader utility.

The following sections describe:

* The structure of the custom formatter

» Compiling and packaging custom formatter bundles
* Installing and invoking custom formatters

» Using custom formatters with the kafkal oader utility

7.3.1. The Structure of the Custom Formatter

The custom formatter must contain a least two Java classes. one that implements
the org.voltdb.inporter.formatter. Formatter interfface and one that extends the
org.voltdb.inporter.formatter. Abstract Fornatt er Fact ory interface.

For the sake of example, let's assume the custom formatter classes are called MyFormatter and
MyFormatterFactory. When the associated import connector is initialized, the VoltDB importer
infrastructure calls the classes methods in the following order:

« MyFornmatterFactory. creat e()iscaled once, toinitialize the formatter. The cr eat e method
must return an instance of the MyFormatter class.

41

Creating Custom Importers,
Exporters, and Formatters

e MyFormatter. MyFormatter () isinvoked once when an instance of the MyFormatter class is
initialized in the preceding step.

* MyFormatter.transform() iscalled from the import connector every timeit retrieves arecord from the
data source.

In many cases, the easiest way to create custom class is to modify an existing example. And VoltDB
provides an example formatter that you can use as a base for your customizations in the VoltDB github
at the following URL.:

https://github.com/V oltDB/voltdb/tree/master/tests/test_apps/kafkaimporter/custom_formatter/formatter

The next sections describe how to modify this example — or how to create a custom formatter from
scratch, if you wish.

7.3.1.1. The AbstractFormatterFactory Interface and Class

You must create a class that extends the AbstractFormatterFactory class. However, within that class all
you need to change is overriding the create() method to return an instance of your implementation of the
Formatter interface. So, assuming the new classnamesusethe prefix "MyFormatter" and using theexample
formatter provided in github, all you need to modify are the items highlighted in the following example:

package myfornatter;

i mport org.voltdb.inporter.fornmatter. Abstract FormatterFactory;

public class MyFormatterFactory extends AbstractFormatterFactory {

/**

* Creates and returns the formatter object.

*/

@verride
public MyFormatter create() {

}

MyFormatter formatter = new MyFormatter (m format Name, m fornat Props);
return formatter;

7.3.1.2. The Formatter Interface and Class

The bulk of the work of a custom formatter occurs in the class that implements the Formatter interface.
Within that class, you must have at least one method that overrides the default t r ansf or n{) method.
Y ou can, optionally, include a method that initializes the class and handles any properties that need to be
passed into the formatter from the import configuration.

7.3.1.2.1. Initializing the Formatter Class

The method that initializes the class has the same name as the class (in our example, MyFormatter). The
method accepts two parameters. a string and a list of properties. The string contains the name of the
formatter as specified in the database configuration file (see Section 7.3.3.2, “ Configuring and Invoking
Custom Formatters’). This string will, by definition, match the name of the class itself. The second
parameter isacollection of Java Property objects representing properties set in the configuration file using
the <f or nmat - pr oper t y> element and certain VoltDB built-in properties, whose names all start with
two underscores.

42

https://github.com/VoltDB/voltdb/tree/master/tests/test_apps/kafkaimporter/custom_formatter/formatter

Creating Custom Importers,
Exporters, and Formatters

If the custom formatter doesn't require any information from the configuration, you do not need to include
this method. However, if your formatter does require additional information, this class can retrieve and
store information provided in the import configuration. For example, the MyFor mat t er () method in
the following implementation looks for a "column_width" property and stores it for later use by the
t ransf or m() method:

package myformatter;

i mport java.util.Properties;
i mport org.voltdb.inporter.formatter. FormatExcepti on;
i mport org.voltdb.inporter.formatter. Fornmatter;

public class MyFormatter inplenments Formatter {

String colum_width = ;

MyFormatter (String fornatNane, Properties prop) {
col um_wi dth = prop. getProperty("colum_w dth");

}
7.3.1.2.2. Transforming the Data

The method that does the actual work of formatting the incoming data is the transform() method. This
method receives the incoming data as a Java byte buffer and is expected to return an array of Java objects
representing the input parameters, which will be passed to the specified stored procedure to insert the data
into the database.

For example, If the custom formatter expects datain fixed-width columns, the method might look like this:

@verride
public Object[] transform ByteBuffer payl oad) throws Format Exception {

String buffer = new String(payl oad. array());
ArraylLi st<Cbject> list = new ArrayLi st <Cbj ect>();

int position = O;

while (position < buffer.length()) {
i nt endpoint = Math. m n(position+colum_wi dth, buffer.length());
list.add(buffer.substring(position, endpoint));
position += col unm_wi dt h;

}

return list.toArray();

}

7.3.2. Compiling and Packaging Custom Formatter Bundles

Once the custom formatter source code is complete, you are ready to compile and package the formatter
as an OSGi bundle.

When compiling the source code, be sure to include the VoltDB JAR files in the Java classpath. For
example, if VoltDB isinstalled in the folder / opt / vol t db, you will need toinclude/ opt / vol t db/
vol tdb/* and/ opt/vol t bd/1i b/ * inthe classpath.

You will also need to include a number of OSGi-specific attributes in the final JAR file manifest. For
example, you must include the Bundle-Activator attribute pointing to the FormatterFactory class. To ensure

43

Creating Custom Importers,
Exporters, and Formatters

all the necessary properties are set, it iseasiest to use the ant utility and an ant build file. The following is
an examplebui | d. xrmd file, with the items that you must modify highlighted in bold text:

<proj ect default="build">
<path id='project.classpath' >
<l-- Replace this with the path to the VoltDB jars -->
<fileset dir="/opt/voltdb' >
<i ncl ude name='voltdb/*.jar' />

<include name='lib/*.jar" />
</fileset>
</ pat h>

<target nanme="buil d" depends="clean, dist, formatter"/>

<target nane="cl ean">

<delete dir="obj"/>

<delete file="nyformatter.jar"/>
</target>

<target nanme="dist">
<nmkdir dir="obj"/>
<javac srcdir="src" destdir="obj">
<cl asspath refi d="project.classpath"/>
</javac>
</target>

<target name="formatter">
<jar destfile="nyformatter.jar" basedir="obj">
<i ncl ude nanme="nyformatter/ MFormatter.class"/>
<i ncl ude name="nyfornmatter/M/FormatterFactory.cl ass"/>
<mani f est >
<attribute name="Bundl e-Activator"
val ue="nyformatter. MyFormatter Factory" />
<attribute name="Bundl e- Mani f est Ver si on" val ue="2" />
<attribute name="Bundl e- Name" val ue="My Formatter OSG Bundle" />
<attribute name="Bundl e- Synbol i cName" val ue="M/Formatter" />
<attribute name="Bundl e-Version" value="1.0.0" />
<attribute name="Dynani cl nport - Package" val ue="*" />
</ mani f est >
</jar>
</target>
</ proj ect >

7.3.3. Installing and Invoking Custom Formatters

Once you have built and packaged the custom formatter, you are ready to install and useit in your VoltDB
infrastructure.

7.3.3.1. Installing Custom Formatters

To ingtall the custom formatter, you simply copy the formatter JAR file (in the preceding examples,
nyfornatter.jar)tothebundl es folder inthe VoltDB installation on every server in the cluster.
For example, if VoltDB isinstalled in/ opt / vol t db:

44

Creating Custom Importers,
Exporters, and Formatters

$ cp obj/nyformatter.jar /opt/voltdb/bundl es/

7.3.3.2. Configuring and Invoking Custom Formatters

Oncethe JARfileisavailableto all VoltDB instances, you can configure and invoke the custom formatter
as part of the import configuration. Note that the import configuration can be changed either before the
database cluster is started or while the database is running using either the voltadmin update command
of the web-based VoltDB Management Center.

You choose the formatter as part of the import configuration using the f or mat attribute of the
<confi gur ati on> element in the database configuration file. Normally, you use the built-in "csv"
format. However, to select acustom formatter, set thef or mat attribute to the name of the formatter JAR
file and its class name. For example:

<i nport>
<configuration type="kafka" format="nyfornatter.jar/ MyFormatter" >

[

<i nport>

]

Storing your custom JAR in the bundles directory is recommended. However, if you choose to keep your
custom code el sewhere, you can still reference it in the configuration by including the absolute path to the
file location as part of the f or mat attribute. For example, if your JAR file isin the /etc/myapp folder,
thef or mat attribute value would be "file:/etc/myapp/myformatter.jar/MyFormatter”. The formatter JAR
must be in the same location on all nodes of the cluster.

Within the import configuration, you can also include any properties that the formatter needs using the
<f or mat - pr oper t y> element. For example, in the preceding example, the custom formatter expects
aproperty called "column_width", so the configuration might look like this;

<configuration type="kafka" format="nyfornatter.jar/ MyFormatter" >
<property nane="brokers" >kaf ka. myor g. or g: 9092</ property>
<property nane="topi cs">cust onmer </ property>
<property nane="procedure">CUSTOVER. i nsert </ property>
<format - property name="col um_wi dt h">15</f or mat - pr operty>
</ configuration>

<i nport>

7.3.4. Using Custom Formatters With the kafkaloader Utility

You can aso use custom formatters with the standalone kafkaloader utility. To use a custom formatter
with kafkaloader you must:

 Declare environment variablesfor FORMATTER LIB and ZK_LIB

» Create a formatter properties file specifying the formatter class and any formatter-specific properties
the formatter requires.

The environment variables define the paths to the formatter JAR file and the Apache ZooK eeper libraries,
respectively. (Note that ZooK eeper does not need to be running, but you must have a copy of the standard
ZooK eeper librariesinstalled and accessible viathe ZK_LIB environment variable.)

The formatter properties file must contain, at a minimum, a "formatter" property that is assigned to the
formatter class of the custom formatter. It can contain other properties required by the formatter. The
following is the properties file for kafkaloader that matches the example given in the previous section to
configure the custom formatter using the built-in importer infrastructure:

45

Creating Custom Importers,
Exporters, and Formatters

formatter=MyFormatter
col utm_wi dt h=15

If both your formatter and the ZooKeeper libraries are in a folder nyf or mat t er under your home
directory, along with the preceding propertiesfile, you could start the kafkal oader utility with thefollowing
commands to use the custom formatter:

export FORMATTER LI B="$HOVE/ nyformatter/"

export ZKLI B="$HOVE/ nyformatter/"

kaf kal oader --formatter=$HOVE/ nyformatter/formatter.config \
--topi c=cust omer --zookeeper=kaf kahost: 2181

@B P PR

46

Chapter 8. Creating Custom SQL
Functions

VoltDB provides many built-in functions for use in SQL statements that are described in an appendix to
the Using VoltDB manual. These built-in functions perform a variety of tasks, such as data conversion,
string matching, geometric calculations, and so on.

However, not all possible functions are built in and there may be cases where you have an application-
specific function that needs to be performed repeatedly. Rather than duplicating the code to perform the
function each time you need it, VoltDB lets you create and declare your own functionsthat can be invoked
directly from within SQL queries and data manipulation statements just like built-in functions.

There are three steps to creating a user-defined function:
1. Write the code to perform the function as a Java method.
2. Load the Java class that includes the user-defined function into the database.

3. Declare the function using the CREATE FUNCTION statement, associating it to the Java class and
method.

The following sections describe how to perform each of these tasks, as well as how to invoke the function
in SQL statements once it has been declared.

8.1. Writing a User-Defined Function

Y ou write user-defined functions as Java methods. If you are creating multiple user-defined functions, you
can put them all in asingle Java class or in separate Java classes. Whichever is most convenient for you
and the management of your code base.

The number and datatypes of the method's parameters define the number and types of the function's
arguments. For example, if you declare the method as having two parameters, aJavai nt and Stri ng,
the function will have two arguments, a VoltDB INTEGER and a VARCHAR. Similarly, the datatype of
the method itself determines the datatype that the function returns.

Because user-defined functions are executable within SQL statements and stored procedures, the methods
must obey the same rules concerning determinism as stored procedures. That is, avoid any actions
that introduce values that may vary from one system to another, such as system time, random number
generation, or 1/0 with indeterminate results. See the section on determinism in the Using VVoltDB manual
for details.

For example, say you need to convert distances from imperia or US units to metric measurements. Y ou
might define your function with two arguments: afloating-point val ue representing the measurement and a
string unit identifying the units (such as "feet", "yards", or "miles"). So your Java source code would need
to declare the method as accepting two parameters: adoubl e and aSt ri ng. It should also be declared
asreturning adoubl e value.

package nyapp. sql.functi ons;

i mport org.vol tdb. *;
public class Conversion {

public doubl e us2metric(double value, String units)

47

Creating Custom SQL Functions

t hrows Vol t Abort Exception {

Note the method is declared as throwing a VoltAbortException. This is useful for error handling. By
throwing a VoltAbortException, it is possible for the function to handle errors gracefully and notify the
VoltDB runtime to rollback the current transaction. For example, the first step in the method might be to
validate the input and make sure the units argument has a known value:

units = units.toUpperCase().trin();
if (lunits.equal s("FEET") &&
lunits. equal s(" YARDS") &&
lunits.equal s("MLES"))
t hrow new Vol t Abort Excepti on("Unrecogni zed sel ector.");

Thebulk of the method will focus on performing the actual task the function is designed for. The key point
isto make sure it returns the appropriate datatype object that correlates to the VoltDB datatype you want
the function to return in the SQL statement. In the previous example, the method is declared as returning
adoubl e, which matches the VoltDB FLOAT type. See the appendix on Datatype compatibility in the
Using VoltDB manual for details on the mapping of Javaand VoltDB datatypes. But, in brief, the mapping
of Javato VoltDB datatypesis asfollows:

byteor Byte | TINYINT

short or Short | SMALLINT
intor Integer _ INTEGER
longor Long _, BIGINT

double or Double _| FLOAT
BigDecimal _ DECIMAL
String _, VARCHAR

byte[] or Byte[] _, VARBINARY

Y ou can define parametersfor V oltDB-specific datatypes by using the object typesincluded in the VoltDB
Java packages. For example:

org.voltdb.types.GeographyValue |, GEOGRAPHY
org.voltdb.types.GeographyPointValue |, GEOGRAPHY_POINT
org.voltdb.types.TimestampType _, TIMESTAMP

8.2. Loading a User-Defined Function into the
Database

Once you have written, compiled, and tested the Java code for your SQL function, you can load it into
the database. Y ou load user-defined functions the same way you load stored procedures, by packaging the
Java class or classes into a JAR file and then loading the JAR file using the LOAD CLASSES statement.
For example:

$ export CLASSPATH="S$CLASSPATH: / opt/vol tdb/vol tdb/*"
$ javac -d ./obj src/nyapp/functions/*.java

$ jar cvf nyfunctions.jar -C obj

$ sqglcnmd

1> | oad cl asses nyfunctions.jar;

Y ou can package multiple function methods or a combination of functions and stored procedure classes
into a single JAR file. The key is that you must load the class containing the function method into the
database before you can declare the SQL function.

48

Creating Custom SQL Functions

8.3. Declaring a User-Defined Function

Once the Java class containing the method is loaded, you can declare the function itself. You declare
the function using the CREATE FUNCTION statement, specifying the name of the function and the
associated Java class path and method name. For example, if you want to call the function associated with
the preceding Java example US2ZMETRIC, the CREATE FUNCTION statement looks like this:

CREATE FUNCTI ON US2METRI C FROM METHOD nyapp. functi ons. Conver si on. us2netri c;

Notethat although the function name, US2METRIC, isnot case sensitive, the class path and method names
are and must be specified in the correct mix of upper and lower-case.

8.4. Invoking User-Defined Functions in SQL
Statements

Once the class is loaded and the function declared, you can include the user-defined function in SQL
gueries and data manipulation (DML) statements just as you normally use built-in functions in SQL.
For example, if a stored procedure needs to convert an entry in miles to the equivalent measurement in
kilometers, the stored procedure definition might look like the following:

CREATE PROCEDURE Expense_in_mles AS
| NSERT | NTO Expense_item (item nanme, distance, destination)
VALUES (?, US2METRIC(?,'MLES), ?);

Note that user-defined functions can be used in queries and DML but cannot be used in data definition
statements, such as CREATE statements that define indexes, tables, or views.

49

Chapter 9. Understanding VoltDB
Memory Usage

VoltDB is an in-memory database. Storing data in memory has the advantage of eliminating the
performance penalty of disk accesses (among other things). However, with the complex interaction of
VoltDB memory usage and how operating systems allocate and deallocate memory, it can be tricky
understanding exactly how much memory is being used at any given time. For example, deleting rows of
data can result in atemporary increase in memory usage, which seems counterintuitive at first.

This chapter explainshow VoltDB uses memory, theimpact of system memory all ocation and deallocation
functions on your database's memory utilization, and variables available to you to help control memory

usage.

9.1. How VoltDB Uses Memory

The memory that VoltDB uses can be grouped, loosely, into three buckets:
* Persistent

* Semi-persistent

» Temporary

Persistent memory is, as you might expect, the memory used for storing actual database records, including
tables, indexes, and views. The larger the volume of data in the database, the more memory required to
storeit. String and varbinary columns longer than 63 bytes are not stored in line. Instead they are stored
as pointers to the content in a separate string storage area, which is also part of persistent memory.

Semi-persistent memory isused for temporary storage while processing SQL statementsand certain system
procedures. In particular, semi-persistent memory includes temporary tables and the undo buffer.

» Temporary tables are where data is processed as part of an SQL statement. For example, if you execute
an SQL statement like SELECT * FROMf | i ght WHERE DESTI NATI ON=' LAX' , all of thetuples
meeting the selection criteria are copied into temporary tables before being returned to the initiator.
If the stored procedure is multi-partitioned, each partition creates a copy of its tuples and the initiator
merges the multiple copies.

e Theundo buffer is also associated with the execution of SQL statements. Any tuples that are modified
or deleted as part of an SQL statement are recorded in the undo buffer until the transaction is committed
or rolled back.

Semi-persistent memory is also used for buffers related to system activities such as snapshots and export.
While a snapshot is occurring, a certain amount of memory is required for overhead, as well as copy-
on-write buffers. Normally, snapshots are written directly from the tables in memory, thus requiring
no additional overhead. However, if snapshots are non-blocking (performed asynchronously while other
transactions are executing), any tuples that need to be modified before they are written to the snapshot get
copied into semi-persistent memory. Thistechniqueisknown as"copy-on-write". The consequenceisthat
mixing asynchronous snapshots with frequent deletes and updates will increase the memory usage.

Similarly, when export is enabled, any insertions into export streams are written to an export buffer in
semi-persistent memory until the export connector sends the data to the export target.

50

Understanding VoltDB
Memory Usage

Temporary memory is used by VoltDB to manage the queueing and distribution of procedures to the
individual partitions. Temporary memory includes the queue of pending procedure invocations as well as
buffers for the return values for the completed procedures (until the client application retrieves them).

Figure 9.1, “The Three Types of Memory in VoltDB” illustrates how the three types of memory are
allocated in VoltDB.

Figure9.1. The Three Typesof Memory in VoltDB

Total memory

VoltDB RSS
(resident set size)

Persistent
—tables, indexes, views
— string storage

Semi-persistent
—temporary tables

— undo buffer

— snapshot overhead
— copy-on-write buffer
— export buffer

Temporary
— procedure queue
—return value buffer

The sum of the persistent, semi-persistent, and temporary memory is what makes up the total memory
(what isreferred to as resident set size, or RSS) used by VoltDB on the server.

9.2. Actions that Impact Memory Usage

Thereareanumber of actionsthat impact the amount of memory VoltDB usesduring operation. Obviously,
the more datathat is stored within the partition (including all tables, indexes, and views), the more memory
isrequired for persistent storage. Similarly for snapshotting and export, when these functions are enabled,
they require some amount of semi-persistent storage. However, under normal conditions, the memory
requirements for snapshotting and export should be relatively consistent over time.

Temporary storage, on the other hand, fluctuates depending on the workload and type of transactions
being executed. If the client applicationsare"firehosing" (sending stored procedure requests faster than the
servers can process them), the temporary storage required for pending procedure invocations will grow.
Similarly, if the parameters being submitted to the procedures or the data being returned is large in size
(up to 50 megabytes per procedure), the buffer for return values can grow significantly.

The nature of the workload al so has an impact on the amount of semi-persistent storage. Read-only queries
do not require space in the undo buffer. However, complex queries and queries that return large data sets

51

Understanding VoltDB
Memory Usage

require space for temporary tables. On the other hand, update and delete queries can take up significant
space in the undo buffer, especially when a single transaction (or stored procedure) performs multiple
queries, each requiring undo support.

The use of the temporary and semi-persistent storage explains fluctuations that can be seen in overall
memory utilization of serversrunning VoltDB. Although delete operations do eventually release memory
used by the persistent storage, they initially require more memory in the undo buffer and for any temporary
table operations. Once the entire transaction is complete and committed, the space in persistent storage
and undo buffer is freed up. Note, however, that the unused space may not immediately be visiblein the
system RSS reports. The amount of memory in use and the amount of memory allocated can vary as a
result of the interaction of several different memory management schemesthat all comeinto play.

When VoltDB frees up space in persistent storage, it does not immediately return that memory to the
operating system. Instead, it keeps track of unused space, which is then reused the next time a tuple is
stored. Over time, memory can becomefragmented. If the fragmentation reachesapreset level, the memory
is compacted and unused space is deallocated and returned to the operating system.

Figure 9.2. Details of Memory Usage During and After an SQL Statement

Free Memory Total memory

VoltDB

Start End frees blocks

VoltDB RSS

freelist (resident set size)

Undo Persistent
[
Semi-persistent
.) - I .
1
Temporary
|
Delete Other I
Procedure transactions

I I
I |
I I
I I
I I
I I
| Buffer |
I I
I I
I I
I I
I I
I I
| |

Figure 9.2, “Details of Memory Usage During and After an SQL Statement” illustrates how a delete
operation can have a delayed effect on overall memory alocation.

1. At the beginning of the transaction, the deleted tuples are recorded in the semi-persistent undo buffer,
increasing memory usage. Any freed persistent storage is returned to the VoltDB list of free space.

2. At the end of the transaction, the undo buffer is freed. However, the storage for the deleted tuplesin
persistent storage is managed and may not be released immediately.

3. Over time, free memory is used for new tuples, until...

52

Understanding VoltDB
Memory Usage

4. At some point, VoltDB compacts any fragmented memory and rel eases unused blocks to the system.

How and when memory is actually deallocated depends on what that memory is being used for and how it
is managed. Thefollowing section Section 9.3, “How VoltDB Manages Memory” describes how VoltDB
manages memory in more detail.

Finally, there are some combinations of factors that can aggravate the fluctuations in memory usage.
The memory required for snapshotting is usually not significant. However, if non-blocking snapshots are
intermixed with update-heavy transactions, the snapshot copy-on-write buffer can grow rapidly.

Similarly, the memory used for export can grow if export is enabled but the connector cannot reach the
target destination to clear the export buffer. However, the export buffer size is constrained; after a certain
point any additional export datathat isnot acknowledged by the connector iswritten out asexport overflow
to disk. So memory used for export queues does not grow indefinitely.

9.3. How VoltDB Manages Memory

To manage memory effectively, VoltDB does not immediately release all unused memory. Allocating
and deallocating small chunks of memory frequently can be expensive. Instead, V oltDB manages unused
memory until larger chunks are available. Similarly, the Java runtime and the operating system perform
their own memory pooling techniques.

Asaresult, RSSis not an exact measurement of actual memory usage. However, VoltDB offers statistics
that provide a detailed breakdown of how it is using the memory that it has currently allocated. These
statistics provide a more meaningful representation of VoltDB's memory usage than the lump sum
allocation reported by the operating system RSS.

VoltDB manages memory for persistent and semi-persistent storage aggressively to ensure unused space
is compacted and released when available. In some cases, memory is returned to the operating system,
making the RSS more responsive to changes in the database contents. In other cases, where memory is
managed as apool of resources, VoltDB provides detail ed statistics on what memory is allocated and what
isactualy in use.

Persistent storage for database tables (tuples) and indexes is compacted when fragmentation reaches a set
percentage of total memory. Compaction eliminates fragmentation and allows memory to be returned to
the operating system as the database volume changes. At the same time, storage for variable data such as
strings and varbinary data greater than 63 bytes in length is being managed as a pool of resources. Free
memory in the pool is not immediately returned to the operating system. VoltDB holds and reuses memory
that is alocated but unused for these objects.

The consequence of these changes is that when you delete rows, the allocated memory for VoltDB (as
shown by RSS) may go up during the delete operation (to allow for the undo buffer), but then it will go
down — by differing amounts — based on the type of content that is deleted. Memory for tuples not
containing large strings or binary datais returned to the operating system quickly. Memory for large string
and binary datais not returned but is held for later reuse.

In other words, the pool size for non-inline string and binary data tends to reach a maximum size (based
on the maximum required for your application workload) and then stabilize. Whereas memory for indexes
aswell as numeric and short string data oscillates as your application needs vary.

To help you understand these changes, the @Statistics system procedure tells you how much memory
VoltDB is using and how much unused memory is being held for each type of content. These statistics
provide a more accurate view of actual memory usage than the lump sum value of system RSS.

53

Understanding VoltDB
Memory Usage

9.4. How Memory is Allocated and Deallocated

Technically, persistent and semi-persistent memory within VoltDB is managed using code written in C++.
Temporary memory is managed using code written in Java. What language the source code is written
inis not usually relevant, except in the case of memory, because different languages manage memory
differently. C++ usesthe traditional explicit allocation and deall ocation of memory, where the application
code controls exactly how and when memory is assigned and deassigned. In Java, memory is not explicitly
allocated and deallocated. Instead, Java uses what is called "garbage collection” to free up memory that
isnotin use.

To complicate matters, the language libraries themselves do some performance optimizations to avoid
allocating and deall ocating memory from the operating system too frequently. So evenif VoltDB explicitly
frees memory in persistent or semi-persistent storage, that memory may not be immediately returned to
the operating system or alter the process's perceived RSS value.

For temporary storage (which is managed in Java), VoltDB cannot explicitly control memory allocation
and deallocation and relies on the Javavirtual machine (JV M) to manage memory appropriately. The VM
decideswhen and how to collect free space from unused objects. Thismeansthat the V oltDB server cannot
directly control if and when the memory associated with temporary storage is returned to the operating
system.

9.5. Controlling How Memory is Allocated

Despite the fact that you as a developer or database administrator cannot control when temporary storage
is allocated and freed, you can control how much memory is used. Java provides away to specify the size
of the heap, the portion of memory the JVM uses to store runtime data such as class instances, arrays,
etc. The - Xms and - Xnx arguments to the j ava command specify the initial and maximum heap size,
respectively.

By setting both the - Xmx and - Xns arguments, you can control not only the maximum amount of memory
used, but also the amount of fluctuation that can occur. Figure 9.3, “Controlling the Java Heap Size”
illustrateshow the- Xns and - Xnk arguments can be used to control the overall size of temporary storage.

Understanding VoltDB
Memory Usage

Figure 9.3. Controlling the Java Heap Size

- — — — — — — — -Xmx (Java max heap size)

L L _ L _ 1 _ _Xms (Javainitial heap size)

However, you must be careful when setting the valuesfor the Javaheap size, sincethe VM will not exceed
the value you set as a maximum. It is possible, under some conditions, to force a Java out-of-memory
error if the maximum heap size is not large enough for the temporary storage VoltDB requires. See the
VoltDB Planning Guide for recommendations on calculating the appropriate heap size for your specific
application.

Remember, temporary storage is used to queue the procedure requests and responses. If you are using
synchronous procedures calls (and therefore little or no queuing on the server) a small heap size is
acceptable. Also, if the size of the procedure invocations (in terms of the arguments passed into the
procedures) and the return values are small, a lower heap size is acceptable. But if you are invoking
procedures asynchronously with large argument lists or return values, be very careful when setting alow
maximum heap size.

9.6. Understanding Memory Usage for Specific
Applications

To help understand the memory usage for a specific VoltDB database, the @Statistics system procedure
provides memory usage information. The "MEMORY" keyword returns a separate row of data for each
server in the cluster, with columns providing information about the different aspects of memory usage,
as described in the following table.

Column Type of Storage Description

JAVAUSED Temporary The amount of memory currently in use for
temporary storage.

JAVAUNUSED Temporary The maximum amount of Java heap allocated but
not currently in use.

TUPLECOUNT Persistent The number of tuples currently being held in
memory.

55

http://docs.voltdb.com/PlanningGuide/

Understanding VoltDB
Memory Usage

Column

Type of Storage

Description

TUPLEDATA

Persistent

The amount of memory in use to store inline table
data.

TUPLEALLOCATED

Persistent

The amount of memory allocated for table storage.
This includes the amount in use and any free space
currently being held by VoltDB.

INDEXMEMORY

Persistent

The approximate amount of memory in use to store
indexes.

STRINGMEMORY

Persistent

The approximate amount of memory in use for non-
inline string and binary storage.

POOLEDMEMORY

Persistent

The total amount allocated to pooled memory,
including the memory assigned for storing strings,
indexes, free lists, and metadata associated with
tuple storage.

RSS

All

Theresident set size for the VoltDB server process.

You can use periodic calls to the @Statistics system procedure with the "MEMORY" keyword to track
your database cluster's memory usage in detail. But if you are only looking for an overall picture, VoltDB
provides simple graphs at runtime.

Connect to a VoltDB server's HTTP port (by default, http://<server-name>:8080) to see graphs of basic
memory usage for that server, including total resident set size (RSS), used Java heap and unused Java heap.
Memory statistics are collected and displayed over three different time frames: 2 minutes, 30 minutes, and
24 hours. Click on the web browser's refresh button to update the charts.

56

Chapter 10. Managing Time

In early versions of VoltDB, all transactions were globally coordinated, using system time to order and
schedule each transaction. As aresult, even small differences in clock time between nodes could impact
latency in the system.

Starting with version 3.0, transactions are no longer globally coordinated and differencesin system clocks
no longer directly impact database latency. However, there are still some database activitiesthat need to be
globally managed, such as when the database starts or failed nodes rejoin the cluster. For these activities,
differencesin clock time can impact — or, if the skew islarge enough, even interrupt — proper operation.

That iswhy it isimportant to ensure a stable and consistent view of time within a VoltDB cluster. This
chapter presents some best practices for configuring and managing time using NTP.

If you are familiar with NTP or another service and have a preferred method for using it, you may want
to read only Section 10.1, “The Importance of Time” and Section 10.2.2, “ Troubleshooting Issues with
Time”. If you are not familiar with NTP, this chapter suggests an approach that has proven to provide
useful resultsin most situations.

The following sections explain:
* Why timeisimportant to aVoltDB cluster
» How to use NTP to manage time across the cluster

 Specia considerations when using VoltDB in a hosted or cloud environment

10.1. The Importance of Time

Because certain operations require coordination between the server nodes, it is important that they agree
on what time it is. When the database process starts, VoltDB determines the maximum amount of skew
(that is, the differencein clock time) between the individual nodesin the cluster. If the skew isgreater than
200 milliseconds (2/10ths of a second), the VoltDB cluster refuses start.

10.2. Using NTP to Manage Time

NTP (Network Time Protocol) is a protocol and a set of system tools that help synchronize time across
servers. Theactual purpose of NTPisto keep anindividual node's clock "accurate”. Thisisdone by having
the node periodically synchronize its clock with a reference server. You can specify multiple servers to
provide redundancy in case one or more time servers are unavailable.

The important point to note here isthat VoltDB doesn't care whether the cluster view of timeis "correct”
from aglobal perspective, but it does care that they all have the same view. In other words, it isimportant
that the nodes all synchronize to the same reference time and server.

10.2.1. Basic Configuration

To manage time effectively on aVoltDB cluster you must:
» Start NTP on each node

» Point each instance of NTP to the same set of reference servers

57

Managing Time

Y ou start NTP by starting the NTP service, or daemon, on your system. On most systems, startingthe NTP
daemon happens automatically on startup. You do not need to perform this action manually. However,
if you need to make adjustments to the NTP configuration, it is useful to know how to stop and start the
service. For example, the following command starts the daemon?;

$ service ntp start -x

Y ou specify thetime server(s) inthe NTP configuration file (usually / et ¢/ nt p. conf). Y ou can specify
multiple servers, one server per line. For example:

server clock. psu. edu

The configuration file is read when the NTP service starts. So, if you change the configuration file after
NTP s running, stop and restart the service to have the new configuration options take affect.

10.2.2. Troubleshooting Issues with Time

In many cases, the preceding basic configuration is sufficient. However, there are issues that can arise
time varies within the cluster.

If you are unsure whether a difference between the clocks in your cluster is causing performance issues
for your database, the first step isto determine how much clock skew is present. When the VoltDB server
starts it reports the maximum clock skew as part of its startup routine. For example:

I NFO - HOST: WMaxi mum cl ock/ network skew is 12 milliseconds (according to | eader)

If the skew is greater than 200 milliseconds, the cluster refuses to start. But even if the skew is around
100 milliseconds, the difference can delay certain operations and the nodes may drift farther apart in the
future. The most common issues when using NTP to manage time are:

» Time drifts between adjustments

« Different time servers reporting different times

10.2.3. Correcting Common Problems with Time

The NTP daemon checksthe time servers periodically and adjusts the system clock to account for any drift
between the local clock and the reference server (by default, somewhere between every 1 to 17 minutes).
If thelocal clock driftstoo much during that interval, it may never be ableto fully correct itself or provide
aconsistent time value to VoltDB.

You can reduce the polling interval by setting the minpoll and maxpoll arguments as part of the server
definition in the NTP configuration file. By setting minpoll and maxpoll to a low value (measured as
exponential values of 2 seconds), you can ensure that the VoltDB server checks more frequently. For
exampl e, setting minpoll and maxpoll to 4 (that is, 16 seconds), you ensure the daemon polls the reference
server approximately every minute”.

Itisalso possiblethat the poll does not get aresponse. When this happens, the NTP daemon normally waits
for the next interval before checking again. To increase the likelihood of receiving a new reference time
— especidly in environments with network fluctuations — you can use the burst and iburst argumentsto
increase the number of polls during each internal.

1The name of the NTP service varies from system to system. For Debian-based operating systems, such as Ubuntu, the service name is "ntp". For
Red Hat-based distributions, such as CentOS, the service nameis "ntpd".

2Useof the-x option isrecommended. Thisoption causes NTP to "slew" time— slowly increasing or decreasing the clock to adjust time — instead
of making one-time jumps that could create sudden changes in clock skew for the entire cluster.

3The default values for mi npoll and maxpoll are 6 and 10, respectively. The allowable value for both is any integer between 4 and 17 inclusive.

58

Managing Time

By combining the burst, iburst, minpoll, and maxpoll arguments, you can increase the frequency that the
NTP daemon synchronizes and thereby reduce the potential drift of the local server's clock. However, you
should not use these arguments with public servers, such as the ones included in the NTP configuration
file by default. Excessive polling of public servers is considered impolite. Instead, you should only use
these argumentswith aprivate server (as described in Section 10.2.4, “Example NTP Configuration”). For
example, the ntp.conf entry might look like the following:

server nyntpsvr iburst burst mnpoll 4 maxpoll 4

Even if your system synchronizes with an NTP server, there can be skew between the reference servers
themselves. Remember, the goal of NTP isto synchronize your system with a reference time source, not
necessarily to reduce the skew between multiple local systems. Even if the polling frequency isimproved
for each node in a VoltDB cluster, the skew between them may never reach an acceptable vaue if they
are synchronizing against different reference servers.

This situation is made worse by the fact that the most common host names for reference servers (such
as ntp.ubuntu.com) are not actual 1P addresses, but rather front ends to a pool of servers. So even if the
VoltDB nodes have the same NTP configuration file, they might not end up synchronizing against the
same physical reference server.

Y ou can determine what actual servers your system is using to synchronize by using the NTP query tool
(ntpg) with the -p argument. The tool displays a list of the servers it has selected, with an asterisk (*)
next to the server currently in use and plus signs (+) next to alternatives in case the primary server is
unavailable. For example:

$ ntpg -p
renot e refid st t when poll reach del ay offset jitter
+dns3.cit.cornel 192.5.41. 209 2 u 14 1024 377 32.185 2.605 0.778
-l oui e. udel . edu 128.4.1.20 2 u 297 1024 377 22.060 3.643 0.920
gi | breth. ecn. pu . STEP. 16 u - 1024 0 0. 000 0.000 0.000
*ot c2. psu. edu 128.118. 2. 33 2 u 883 1024 377 29.776 1.963 0.901
+eur opi um canoni 193.79. 237. 14 2 u 1017 1024 377 90.207 2.741 0.874

Note that NTP does not necessarily choose the first server on the list and that the generic host names are
resolved to different physical servers.

So, although it isnormal to have multiple serverslisted in the NTP configuration file for redundancy, it can
introduce differencesin thelocal system clocks. If the maximum skew for aVoltDB cluster is consistently
outside of acceptable values, you should take the following steps:

» Change from using generic host names to specific server IP addresses (such as otc2.psu.edu or
128.118.2.33 in the preceding example)

» Listonly one NTP server to ensure all VVoltDB nodes synchronize against the same reference point

Of course, using only onereference server for timeintroducesasingle point of failureto your environment.
If the reference server is not available, the database nodes receive no new reference values for time.
The nodes continue to synchronize as best they can, based on the last valid reference time and historical
information about skew. But over time, the clock skew within the cluster will start to drift.

10.2.4. Example NTP Configuration

Y ou can provide both redundancy and maintain a single source for time synchronization, by creating your
own NTP server.

59

Managing Time

NTP assumes a hierarchy (or strata) of servers, where each level of server synchronizes against servers
one level up and provides synchronization to servers one level down. Y ou can create your own reference
server by inserting a server between your cluster nodes and the normal reference servers.

For example, assume you have anode myntpsvr that usesthe default NTP configuration for setting itsown
clock. It can list multiple reference servers and use the generic host names, since the actual time does not
matter, just that all cluster nodes agree on asingle source.

Then the VVoltDB cluster nodeslist your private NTP server astheir one and only reference node. By doing
this, al the nodes synchronize against a single source, which has strong availability since it is within the
same physical infrastructure as the database cluster.

Of course, there is aways the possibility that access to your own NTP server could fail, in which case
the database nodes need a fallback to ensure they continue to synchronize against the same source. You
can achieve this by:

» Adding al of the cluster nodes as peers of the current node in the NTP configuration file

» Adding the current node (localhost) asits own server and setting it asalow level stratum (for example,
stratum 10)

By listing the nodes of the cluster as peers, you ensure that when the reference server (myntpsvr in this
example) becomes unavailable, the nodes will negotiate between themselves on an alternative source. At
the same time, listing localhost (127.127.0.1) as a server tellsthe node that it can useitself as areference
server. In other words, the cluster nodes will agree among themselves to use one of their own as the
reference server for synchronizing time. Finally, by using thefudge statement to set the stratum of local host
to 10, you ensure that the cluster will only pick one of its own members as a reference server for NTP if
the primary server is unavailable.

Example 10.1, “Custom NTP Configuration File’ shows what the resulting NTP configuration file might

look like. This configuration can be the same on all nodes of the cluster, since peer entries referencing
the current node are ignored.

Example 10.1. Custom NTP Configuration File

server nmyntpsvr burst iburst mnpoll 4 maxpoll 4
peer voltsvrl burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4

peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1
fudge 127.127.0.1 stratum 10

10.3. Configuring NTP in a Hosted, Virtual, or
Cloud Environment

The preceding recommendations for using NTP work equally well in amanaged or a hosted environment.
However, there are some additional issuesthat can arise when working in ahosted environment that should
be considered.

In a locally managed environment, you have complete control over both the hardware and software
configuration. This means you can ensure that the VoltDB cluster nodes are connected to the same switch

60

Managing Time

and in close proximity to a private NTP server, guaranteeing the best network performance within the
cluster and to the NTP reference server.

In a hosted environment, you may not have control over the physical arrangement of servers but you
usually have control of the software configuration.

In avirtualized or cloud environment, you have no control over — or even knowledge of — the hardware
configuration. Y ou are often using apredefined system image or "instance", including the operating system
and time management configuration, which may not be appropriate for VoltDB. There are configuration
changes you should consider making each time you "spin up" anew virtual server.

10.3.1. Considerations for Hosted Environments

In situations where you have control over the selection and configuration of the server operating system
and services, the preceding recommendations for configuring NTP should be sufficient. The key concern
would be those aspects of the environment you do not have control over: network bandwidth and reliability.
Again, the recommended NTP configuration in Section 10.2.4, “ Example NTP Configuration”, especially
the use of a loca timer server and peer relationship within the cluster, should provide reliable time
management despite any network fluctuations.

10.3.2. Considerations for Virtual and Cloud Environments

In virtual or cloud environments, you usually do not have control over either the hardware or the initial
software configuration. New servers are instantiated from a common system image, or "instance", with
default configurations for the operating system and time management. This presents two problems for
establishing areliable environment for VoltDB:

» The default configuration may not be sufficient and must be overridden

» Because of the prior issue, there can be considerable clock skew that must be corrected before running
VoltDB

Virtualization allows multiple virtual serversto run on asingle piece of hardware. To do this, prepackaged
"instances’ of an operating system are booted under a virtual machine manager. These instances are
designed to support the majority of applications, most of which do not have extensive requirements for
clock synchronization, As aresult, the instances often use default NTP configurations or none at all.

When you spin up a new virtual server, in most cases you need to reconfigure NTP, changing the
configuration file asdescribed in Section 10.2.4, “ Example NTP Configuration” and restarting the service.

In some cases, NTPisnot used at all. Instead, the operating system synchronizesits (virtual) clock against
the clock of the physical server on which it runs. You need to override this setting before installing,
configuring, and starting NTP. For example, when running early instances of Ubuntu in EC2 under the
Xen hypervisor, you must modify the file/ proc/ sys/ xen/ i ndependent _wal | ¢l ock to avoid
the hypervisor performing the clock synchronization. For example:

$ echo "1" > /proc/sys/xen/independent _wal | cl ock
$ apt-get install -y ntp

This particular approach is specific to the Xen hypervisor. Other virtualization engines may use a
different approach for controlling the system clock. See the documentation for your specific virtualization
environment for details.

Once NTP is running and managing the system clock, it can take a considerable amount of time for
the clocks to synchronize if the initial skew is large. You can reduce this initial delay by forcing
synchronization beforeyou start VoltDB. Y ou can do this performing thefollowing stepsastheuser r oot :

61

Managing Time

1. Stopthe NTP service.

2. Use the nt pdat e command to synchronize against a specific reference server. Do this several times
until the reported skew is consistently low. (It will never effectively be less than a millisecond — a
thousandth of a second — but can be reduced to afew milliseconds.)

3. Restart the NTP Service.
For example, if your local time server's P address is 10.10.56.1, the commands might look like this:

$ service ntp stop

* Stoppi ng NTP server ntpd [OK]
$ ntpdate -p 8 10.10.56.1
20 Cct 09:21:04 ntpdate[2795]: adjust tinme server 10.10.56.1 offset 0.008294 sec
$ ntpdate -p 8 10.10.56.1
20 Cct 09:21:08 ntpdate[2797]: adjust tinme server 10.10.56.1 offset 0.002518 sec
$ ntpdate -p 8 10.10.56.1
20 Cct 09:21:12 ntpdate[2798]: adjust tinme server 10.10.56.1 offset 0.001459 sec
$ service ntp start -x

* Starting NTP server ntpd [OK]

Once NTP is configured and the skew between the individual clocks and the reference server has been
minimized, you can safely start the VoltDB database.

62

	Guide to Performance and Customization
	Table of Contents
	Preface
	1. Organization of this Manual
	2. Other Resources

	Chapter 1. Introduction
	1.1. What Affects Performance?
	1.2. How to Use This Book

	Chapter 2. Hello, World! Revisited
	2.1. Optimizing your Application for VoltDB
	2.2. Applying Hello World to a Practical Problem
	2.3. Partitioned vs. Replicated Tables
	2.3.1. Defining the Partitioning Column
	2.3.2. Creating the Stored Procedures
	2.3.2.1. Loading the Replicated Table
	2.3.2.2. Registering New Users
	2.3.2.3. Signing In

	2.4. Using Asynchronous Stored Procedure Calls
	2.4.1. Understanding Asynchronous Programming
	2.4.2. The Callback Procedure
	2.4.3. Making an Asynchronous Procedure Call

	2.5. Connecting to all Servers
	2.6. Putting it All Together
	2.7. Next Steps

	Chapter 3. Understanding VoltDB Execution Plans
	3.1. How VoltDB Selects Execution Plans for Individual SQL Statements
	3.2. Understanding VoltDB Execution Plans
	3.3. Reading the Execution Plan and Optimizing Your SQL Statements
	3.3.1. Evaluating the Use of Indexes
	3.3.2. Evaluating the Table Order for Joins

	Chapter 4. Using Indexes Effectively
	4.1. Basic Principles for Effective Indexing
	4.2. Defining Indexes
	4.3. The Goals for Effective Indexing
	4.4. How Indexes Work
	4.5. Summary

	Chapter 5. Creating Flexible Schemas With JSON
	5.1. Using JSON Data Structures as VoltDB Content
	5.2. Querying JSON Data
	5.3. Updating JSON Data
	5.4. Indexing JSON Fields
	5.5. Summary: Using JSON in VoltDB

	Chapter 6. Creating Geospatial Applications
	6.1. The Geospatial Datatypes
	6.1.1. The GEOGRAPHY_POINT Datatype
	6.1.2. The GEOGRAPHY Datatype
	6.1.3. Sizing GEOGRAPHY Columns
	6.1.4. How Geospatial Values are Interpreted

	6.2. Entering Geospatial Data
	6.3. Working With Geospatial Data
	6.3.1. Working With Locations
	6.3.2. Working With Regions

	Chapter 7. Creating Custom Importers, Exporters, and Formatters
	7.1. Writing a Custom Exporter
	7.1.1. The Structure and Workflow of the Export Client
	7.1.2. How to Use Custom Properties to Configure the Client
	7.1.3. How to Compile and Install the Client
	7.1.4. How to Configure the Export Client

	7.2. Writing a Custom Importer
	7.2.1. Designing and Coding a Custom Importer
	7.2.1.1. Run-Everywhere vs. Single Process
	7.2.1.2. Managing the Starting and Stopping of the Import Process

	7.2.2. Packaging and Installing a Custom Importer
	7.2.3. Configuring and Running a Custom Importer

	7.3. Writing a Custom Formatter
	7.3.1. The Structure of the Custom Formatter
	7.3.1.1. The AbstractFormatterFactory Interface and Class
	7.3.1.2. The Formatter Interface and Class
	7.3.1.2.1. Initializing the Formatter Class
	7.3.1.2.2. Transforming the Data

	7.3.2. Compiling and Packaging Custom Formatter Bundles
	7.3.3. Installing and Invoking Custom Formatters
	7.3.3.1. Installing Custom Formatters
	7.3.3.2. Configuring and Invoking Custom Formatters

	7.3.4. Using Custom Formatters With the kafkaloader Utility

	Chapter 8. Creating Custom SQL Functions
	8.1. Writing a User-Defined Function
	8.2. Loading a User-Defined Function into the Database
	8.3. Declaring a User-Defined Function
	8.4. Invoking User-Defined Functions in SQL Statements

	Chapter 9. Understanding VoltDB Memory Usage
	9.1. How VoltDB Uses Memory
	9.2. Actions that Impact Memory Usage
	9.3. How VoltDB Manages Memory
	9.4. How Memory is Allocated and Deallocated
	9.5. Controlling How Memory is Allocated
	9.6. Understanding Memory Usage for Specific Applications

	Chapter 10. Managing Time
	10.1. The Importance of Time
	10.2. Using NTP to Manage Time
	10.2.1. Basic Configuration
	10.2.2. Troubleshooting Issues with Time
	10.2.3. Correcting Common Problems with Time
	10.2.4. Example NTP Configuration

	10.3. Configuring NTP in a Hosted, Virtual, or Cloud Environment
	10.3.1. Considerations for Hosted Environments
	10.3.2. Considerations for Virtual and Cloud Environments

