
Deploying and Managing VoltDB
Databases With Kubernetes

V9.3

February, 2020

Introducon

This document explains how VoltDB works with Kubernetes and Docker to run and manage databases in a virtualized
environment. This is not a tutorial on Kubernetes, Docker, or VoltDB. You should be familiar with all three
technologies before using this document.

Overview of the Kubernetes Deployment Process
Kubernetes is an orchestration tool for managing applications and services run in containers. It is designed to automate
the management of distributed applications, with a particular focus on microservices. VoltDB is not a microservice;
there is more interaction between a VoltDB cluster's individual nodes than in most microservices. However, you can
still use Kubernetes to run and manage VoltDB clusters.

This document describes one approach for running VoltDB in a Kubernetes environment. It is automated by scripts
provided in the VoltDB kit starting with VoltDB V8.3.3. The process utilizes four key aspects of Kubernetes:

• Docker — A Docker image is created that contains the current installation of the VoltDB server software, plus the
scripts necessary to start the server process.

• ConfigMaps — Kubernetes ConfigMaps store the artifacts needed to create your database, including the optional
schema and stored procedure classes, the configuration file, and the VoltDB license.

• Persistent Storage Volumes — The server startup process initializes Kubernetes persistent storage volumes to
maintain the ongoing state of the database across database sessions. Specifically, the persistent volumes hold the
VoltDB database root directories including the current schema, command logs, snapshots, export overflow, and so
on.

• Stateful Sets — The configuration of the cluster of Kubernetes pods is defined as a Kubernetes stateful set. You
use the stateful set definition to initialize and control the VoltDB cluster. It also allows Kubernetes to restart pods
in case the individual nodes fail.

Requirements
Before starting the process described in this document, make sure your development system and account meet the
following requirements:

• Installed:
• VoltDB 9.3 or later
• Kubernetes command line (kubectl) 1.10.4 or later



Deploying and Managing VoltDB Databases With Kubernetes

• Docker1

• Copies of:
• Database configuration file and license (if using the Enterprise Edition)
• Optionally, the database schema and JAR file containing stored procedure classes

• Access to:
• Docker registry
• Kubernetes hosting environment

In addition to the preceding requirements for your development system, your Kubernetes hosting environment must
also have access to the Docker repository you are using (or another repository the compiled Docker image will be
copied to) and have the ability to instantiate persistent storage volumes to retain the VoltDB root directories and their
contents for when pods are deleted and recreated.

Special Consideraons for Running VoltDB in a Virtualized
Environment
VoltDB, like all memory-intensive applications, is sensitive to base system settings that control access to assets such as
memory, CPU, and networking. Memory configuration options such as swapping and Transparent Huge Pages (THP)
can dramatically impact the performance of a VoltDB database. In extreme cases, THP can result in unnecessary
allocations of memory to the point where the server process runs out of memory. This is why VoltDB recommends
turning off THP.

The VoltDB Administrator's Guide contains a chapter on how to prepare a server for optimal use with VoltDB,
including disabling THP. However, in a virtualized environment — and particularly when using containers — you do
not have direct access to the base system's core settings from within the virtual machine (VM) or container. Therefore,
to ensure proper and consistent operation of VoltDB in such environments, you must make the necessary adjustments
on the base system itself.

If you are running VMs on hardware you manage, this can be done by configuring the servers yourself. If, on the other
hand, you are using a hosted environment, you should consider other alternatives. You can negotiate with the hosting
provider to ensure the servers are configured correctly. Alternately, you can use privileged mode VMs (essentially,
dedicated servers reserved for your account) and Kubernetes features to modify the base system before any containers
are run.

The following are some resources that can help you make the appropriate decision about your configuration choices:

• Stack Overflow discussion of using Kubernetes' init-containers and DaemonSets to disable Transparent Huge Pages

• Paul Done's blog post on configuring Kubernetes and hosted VMs for running MongoDB

Deploying VoltDB in Kubernetes

The Kubernetes support in VoltDB uses one main control script (tools/kubernetes/voltdb-k8s-
utils.sh) to perform all of the functions needed to configure, build, and run VoltDB in a Kubernetes environment.
The control script lets you:

• Build a Docker image containing the VoltDB software and scripts to facilitate cluster startup in Kubernetes

1The required version of Docker is dependent on the version of Kubernetes and the choice of base OS to be used. See the Kubernetes release notes
for details.

2

https://docs.voltdb.com/AdminGuide/
https://docs.voltdb.com/AdminGuide/ServerConfigChap.php
https://stackoverflow.com/questions/45279477/disable-transparent-huge-pages-from-kubernetes
http://pauldone.blogspot.com/2017/06/mongodb-kubernetes-production-settings.html


Deploying and Managing VoltDB Databases With Kubernetes

• Create Kubernetes ConfigMaps containing database assets such as the schema, stored procedures, configuration
file, and VoltDB license

• Start and manage the VoltDB cluster

The basic steps for deploying a VoltDB database in Kubernetes are:

1. Copy the template Kubernetes configuration file tools/kubernetes/config_template.cfg. Edit your
copy to specify the desired properties for your cluster, such as memory size, CPU count, location of the starting
schema and stored procedure classes and so on. The control script uses this configuration file to personalize all
of its actions.

2. Create a docker image including your current VoltDB software installation. This is the version of the VoltDB
software that will be run in Kubernetes.

3. Create Kubernetes ConfigMaps containing your database configuration file, schema, stored procedure classes, and
license file.

4. Start and manage your VoltDB cluster using the control script commands.

Figure 1, “Deploying VoltDB in Kubernetes” illustrates the overall process for setting up and running VoltDB in
Kubernetes.

Figure 1. Deploying VoltDB in Kubernetes

The following sections describe each step. See the README file in the Kubernetes directory for details about the
properties in the configuration file and the specific commands to perform each step.

Creang the Configuraon File
The first step is to create a Kubernetes configuration file. You do this by copying the configuration template in the /
tools/kubernetes folder where VoltDB is installed. For example:

$ cd ~/voltdb/tools/kubernetes
$ cp config_template.cfg productDB.cfg

The configuration file defines variables used by the other scripts in the folder. In particular, there are variables for
the cluster name and the docker image name. If you do not specify a cluster name, the scripts use the name of the

3



Deploying and Managing VoltDB Databases With Kubernetes

configuration file itself for the cluster name. The cluster name is then used for other output files created by the scripts.
If you do not specify an image name in the configuration, the scripts use the cluster name — either one specified in
the configuration or the name of the configuration file itself if a cluster name is not specified.

Once you create a copy of the configuration file, edit it to define the properties you want for your database cluster,
including deployment attributes and runtime assets such as the schema and procedure classes. The scripts ensure
your assets are available to the cluster from Kubernetes ConfigMaps and that they and the software are copied to the
appropriate locations during startup.

See the README file in the /tools/kubernetes folder for specifics on what properties you can set in the
configuration file.

The scripts in the Docker image look for an existing database root directory. If they do not find it, they allocate
Kubernetes persistent storage and initialize a new root directory. The use of persistent storage means the root directory
is preserved, even when individual pods or the cluster as a whole goes down. This supports VoltDB availability features,
such as command logging and automated snapshots, that save and restore the database contents across sessions.

Building the Docker Image
Once you edit the configuration file, you can create the Docker image that Kubernetes uses to start the cluster.
All the actions to build and start VoltDB in Kubernetes are performed by the voltdb-k8s-utils.sh script, specifying
the configuration file and an action argument. For example, to build the Docker image using the configuration file
productDB.cfg you specify the -B argument:

$ cd ~/voltdb/tools/kubernetes
$ ./voltdb-k8s-utils.sh productDB.cfg -B

Loading Assets into the ConfigMaps
The next step is to load the assets needed to configure and start VoltDB into Kubernetes ConfigMaps using the -M
flag. These assets may include the VoltDB configuration file, database schema, procedure classes, and license file, as
defined by the Kubernetes configuration created in the section called “Creating the Configuration File”. For example:

$ ./voltdb-k8s-utils.sh productDB.cfg -M

Starng and Managing the Cluster
Finally, you create the definition of the Kubernetes stateful set (that is, the YAML file) and start the cluster using the
-C and -S arguments. For example:

$ ./voltdb-k8s-utils.sh productDB.cfg -C
$ ./voltdb-k8s-utils.sh productDB.cfg -S

Once the cluster starts, Kubernetes takes care of monitoring and restarting the pods as needed to keep the database
running. The voltdb-k8s-utils.sh script provides other arguments to perform management actions manually,
such as shutting down the cluster and deleting Kubernetes resources. See the README for details.

Monitoring the Database

You can use any number of techniques to monitor VoltDB databases, whether they are being managed by Kubernetes
or not. For example, you can use SNMP traps to notify operators about error conditions or apply monitoring tools
such as Nagios to integrate VoltDB monitoring with the monitoring of other systems. In addition, Kubernetes adds
two monitoring "probes" of its own.

4



Deploying and Managing VoltDB Databases With Kubernetes

To automate the management of your applications, Kubernetes performs periodic health checks on the pods. The two
key Kubernetes health checks, or probes, are liveness and readiness.

• Liveness tells Kubernetes whether the pod is still viable and the application is still running. If a pod's liveness probe
returns false, Kubernetes will restart the pod in an attempt to return it to normal operation.

• Readiness is an indicator of whether the application itself is operating properly. Kubernetes does not automatically
restart pods that are not ready. But it does show the readiness state on the dashboard and will not include the pod
in certain activities (such as load balancing) if it is not ready.

By default, the VoltDB liveness probe tests to see that the internal port is open, the port the cluster uses to communicate
internally. This indicates that the server process is up and running. It does not indicate the operational state on the
database itself.

The default readiness probe tests to see if the client port is open, the port client applications use to interact with
the database. This indicates that the database itself is running and any startup tasks, such as restoring snapshots or
command logs, have been completed.

It should be noted that by default Kubernetes does not allow a pod to expose network ports until the application
is "ready". However, VoltDB needs to expose ports to establish the cluster mesh before it can be ready for normal
operation. So, VoltDB overrides the default readiness requirement in this respect. This allows the cluster to form,
recover existing data, then open the client port before the practical definition of readiness is reported.

Connecng to a VoltDB Database in Kubernetes

There are many different ways to connect to a service within Kubernetes. The simplest approach is to run the client
application within the same Kubernetes subnet as the VoltDB cluster itself, for example as a Kubernetes headless
service. In this configuration your client application can refer to the VoltDB cluster servers by their hostnames alone.

If your client is running outside of the Kubernetes cluster, you must use a different approach to connecting to the
database cluster. The key is to find a persistent IP address that both the client and server agree on as the public Internet
interface for the server.

You can open a port on the underlying hardware (NodePort) to the server or establish a separate load balancing service
that is accessible externally. But, quite frankly, none of the generic options available in Kubernetes provide reliable
performance guarantees without significant customization.

There are essentially two approaches to connecting to a VoltDB database running within a Kubernetes environment:

• Opening up an externally accessible port and IP address to which applications connect

• Tunneling in to the Kubernetes internal subnet and connecting to the internal IP addresses

Opening up an IP address and port externally to the individual pods in a VoltDB usually involves ephemeral addresses
that do not match the addresses the cluster itself knows about or requires significant privileges and special functions
within the hosting environment. In almost all cases this means performance optimizations in the client — such as
topology awareness and client affinity — cannot operate properly and performance will suffer consequently.

For client affinity and topology awareness to operate properly, the client application needs to have access to IP
addresses for each of the nodes in the VoltDB cluster and the cluster needs to be able to advertise those addresses either
directly or through the externalinterface option. One reliable way to achieve this is to either run the client application
within the same Kubernetes cluster or provide a secure tunnel into the Kubernetes subnet. This approach has several
advantages:

• It allows the client to connect to the cluster nodes by host name

5



Deploying and Managing VoltDB Databases With Kubernetes

• The host names are persistent and definable

• Client features such as topology awareness and client affinity operate properly

This is also true for database replication (DR) and XDCR) where the consumer needs to be able to identify appropriate
producer nodes for each partition. Using a private tunnel or other mechanism to have all clusters within a single XDCR
relationship running within the same logical subnet significantly reduces the complexity of establishing the necessary
network relationship between clusters.

Seng Up Database Replicaon with Kubernetes

The previous discussion of defining and starting VoltDB in Kubernetes focuses on individual clusters. VoltDB also
supports database replication (DR), where data from one database is replicated to another (master/replica), or cross
datacenter replication (XDCR) where two or more database clusters are actively processing read and write transactions
and sharing the results.

In most cases DR and XDCR are used to connect geographically disparate clusters. In other words, clusters in different
Kubernetes instances, regions, or possibly between Kubernetes and completely different hosting environments. In
these cases, special consideration needs to be taken about how the distributed clusters establish their connections.

Requirements for DR in Kubernetes
To establish DR between two VoltDB clusters, the nodes of the consumer cluster must be able to create a network
connection to the IP addresses of all the producer cluster nodes. In passive DR, this means the replica cluster must be
able to resolve the IP addresses of the master cluster. XDCR clusters act as both consumer and producer, so all clusters
must be able to resolve the IP addresses of other clusters in the XDCR relationship.

When setting up DR between clusters in different Kubernetes clusters or between Kubernetes and another production
environment, it is important that your network topology meets this requirement; for example, by using a virtual private
cloud (VPC) , a virtual Local area network (VLAN), or port remapping as described in the section called “Connecting
to a VoltDB Database in Kubernetes”. Which of these features is available to you and how you instantiate them is
dependent on your Kubernetes provider and your agreement with them.

Establishing the DR connection at runtime occurs in two steps:

1. First, a consumer cluster contacts the producer through a network address specified in the VoltDB configuration
file (using the <dr> and <connection> tags). The producer responds with the list of IP addresses and port
numbers for its nodes.

2. The first cluster then drops the initial connection and opens connections (one per partition) to nodes on the producer
cluster using the list of IP addresses received in step #1.

The IP address used in step #1 needs to be static so it can be defined in the configuration file before the clusters start.
On the other hand, the IP addresses Kubernetes assigns to individual pods used in step #2 are temporal and can change.

Fortunately, the addresses used in the configuration file to find the producer cluster and the addresses returned by
the producer at runtime do not have to be the same. One way to bridge this difference is to use a Kubernetes load
balancer to connect a static IP address to the producer cluster. The consumer cluster can configure its DR connection
using the static IP address of the load balancer and then resolve the actual IP addresses returned at runtime using a
virtual network.

When using port remapping (rather than VPC or VLANs), it is important that in step #1 the producer cluster responds
the with remapped IP addresses rather than its internal addresses. You can ensure this happens by specifying the

6



Deploying and Managing VoltDB Databases With Kubernetes

remapped address (and, optionally, port) in the --drpublic argument in the VOLTDB_START_ARGS property
of the Kubernetes configuration file..

Finally, it is important to note that performance of the network dramatically impacts the performance of data replication
and VoltDB itself. For best performance, you must use networking resources that can support the peak bandwidth
requirements of the replication stream. Hosting services often provide networking features with different performance
tiers. Inadequate network bandwidth can result in bottlenecks, backlogs, and ultimately, if not addressed, the DR
connection itself may be broken. So use of high bandwidth cross-zone or cross-region networking is recommended
when supporting DR.

7


	Deploying and Managing VoltDB Databases With Kubernetes
	Introduction
	Overview of the Kubernetes Deployment Process
	Requirements
	Special Considerations for Running VoltDB in a Virtualized Environment

	Deploying VoltDB in Kubernetes
	Creating the Configuration File
	Building the Docker Image
	Loading Assets into the ConfigMaps
	Starting and Managing the Cluster

	Monitoring the Database
	Connecting to a VoltDB Database in Kubernetes
	Setting Up Database Replication with Kubernetes
	Requirements for DR in Kubernetes


