
Administrator's Guide

Abstract

This books explains how to create and manage VoltDB databases and the clusters that run
them.

V4.9

Administrator's Guide
V4.9
Copyright © 2014 VoltDB Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition, which is distributed
by VoltDB, Inc. under a commercial license. Your rights to access and use VoltDB features described herein are defined by the license you received
when you acquired the software.

This document was generated on November 24, 2014.

http://www.gnu.org/licenses/

iii

Table of Contents
Preface .. vi

1. Structure of This Book ... vi
2. Related Documents .. vi

1. Managing VoltDB Databases .. 1
1.1. Getting Started ... 1
1.2. Understanding the VoltDB Utilities ... 1
1.3. Management Tasks ... 2

2. Preparing the Servers ... 4
2.1. Server Checklist ... 4
2.2. Install Required Software ... 4
2.3. Configure Memory Management ... 5

2.3.1. Disable Swapping .. 5
2.3.2. Enable Virtual Memory Mapping and Overcommit ... 5

2.4. Turn off TCP Segmentation ... 6
2.5. Configure NTP .. 6
2.6. Configure the Network .. 6
2.7. Assign Network Ports ... 7

3. Starting and Stopping the Database .. 8
3.1. Configuring the Cluster and Database .. 8
3.2. Starting the Database .. 9
3.3. Stopping the Database ... 10
3.4. Restarting the Database .. 11

4. Maintenance and Upgrades ... 12
4.1. Backing Up the Database ... 12
4.2. Updating the Database Schema ... 12

4.2.1. Performing Live Schema Updates .. 13
4.2.2. Performing Updates Using Save and Restore ... 13

4.3. Upgrading the Cluster .. 14
4.3.1. Performing Server Upgrades ... 14
4.3.2. Adding Servers to a Running Cluster with Elastic Scaling 15
4.3.3. Reconfiguring the Cluster During a Maintenance Window 16

4.4. Upgrading VoltDB Software ... 16
5. Monitoring VoltDB Databases ... 17

5.1. Monitoring Overall Database Activity .. 17
5.1.1. VoltDB Management Console .. 17
5.1.2. System Procedures .. 17

5.2. Integrating VoltDB with Other Monitoring Systems .. 19
5.2.1. Integrating with Ganglia .. 19
5.2.2. Integrating Through JMX .. 19
5.2.3. Integrating with Nagios ... 20
5.2.4. Integrating with New Relic .. 20

6. What to Do When Problems Arise ... 21
6.1. Where to Look for Answers ... 21
6.2. Recovering in Safe Mode ... 21

6.2.1. Logging Constraint Violations .. 22
6.2.2. Safe Mode Recovery ... 22

6.3. Collecting the Log Files ... 23
6.3.1. Collecting Log Files Using the Command Line .. 23
6.3.2. Collecting Log Files Using the Enterprise Manager ... 24
6.3.3. Collecting Log Files Using the REST Interface .. 24

A. Server Configuration Options ... 26

Administrator's Guide

iv

A.1. Server Configuration Options ... 26
A.1.1. Network Configuration (DNS) ... 26
A.1.2. Time Configuration (NTP) .. 27

A.2. Process Configuration Options .. 27
A.2.1. Maximum Heap Size .. 27
A.2.2. Other Java Runtime Options (VOLTDB_OPTS) .. 27

A.3. Database Configuration Options .. 28
A.3.1. Sites per Host ... 28
A.3.2. K-Safety .. 28
A.3.3. Network Partition Detection .. 29
A.3.4. Automated Snapshots ... 29
A.3.5. Export ... 29
A.3.6. Command Logging .. 29
A.3.7. Heartbeat ... 29
A.3.8. Temp Table Size ... 30
A.3.9. Query Timeout .. 30

A.4. Path Configuration Options .. 30
A.4.1. VoltDB Root .. 31
A.4.2. Snapshots Path .. 31
A.4.3. Export Overflow Path ... 31
A.4.4. Command Log Path ... 31
A.4.5. Command Log Snapshots Path ... 32

A.5. Network Ports ... 32
A.5.1. Client Port .. 32
A.5.2. Admin Port .. 33
A.5.3. Web Interface Port (httpd) ... 33
A.5.4. Internal Server Port .. 34
A.5.5. Log Port .. 34
A.5.6. JMX Port ... 34
A.5.7. Replication Port .. 35
A.5.8. Zookeeper Port .. 35

B. Snapshot Utilities ... 36
snapshotconvert .. 37
snapshotverify .. 38

v

List of Tables
1.1. Database Management Tasks .. 2
3.1. Configuring Database Features in the Deployment File .. 9
5.1. Nagios Plugins ... 20
A.1. VoltDB Port Usage .. 32

vi

Preface
This book explains how to manage VoltDB databases and the clusters that host them. It is intended for
database administrators and operators, responsible for the ongoing management and maintenance of data-
base infrastructure.

1. Structure of This Book
This book is divided into 6 chapters and 2 appendices:

• Chapter 1, Managing VoltDB Databases

• Chapter 2, Preparing the Servers

• Chapter 3, Starting and Stopping the Database

• Chapter 4, Maintenance and Upgrades

• Chapter 5, Monitoring VoltDB Databases

• Chapter 6, What to Do When Problems Arise

• Appendix A, Server Configuration Options

• Appendix B, Snapshot Utilities

2. Related Documents
This book does not describe how to design or develop VoltDB databases. For a complete description of
the development process for VoltDB and all of its features, please see the accompanying manual Using
VoltDB. For information on managing VoltDB databases using a graphical interface, see the VoltDB En-
terprise Manager Guide. These and other books describing VoltDB are available on the web from http://
www.voltdb.com/.

http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/MgtGuide/
http://docs.voltdb.com/MgtGuide/
http://www.voltdb.com/
http://www.voltdb.com/

1

Chapter 1. Managing VoltDB Databases
VoltDB is a distributed, in-memory database designed from the ground up to maximize throughput perfor-
mance on commodity servers. The VoltDB architecture provides many advantages over traditional data-
base products while avoiding the pitfalls of NoSQL solutions:

• By partitioning the data and stored procedures, VoltDB can process multiple queries in parallel without
sacrificing the consistency or durability of an ACID-compliant database.

• By managing all data in memory with a single thread for each partition, VoltDB avoids overhead such
as record locking, latching, and device-contention inherent in traditional disk-based databases.

• VoltDB databases can scale up to meet new capacity or performance requirements simply by adding
more nodes to the cluster.

• Partitioning is automated, based on the schema, so there is no need to manually shard or repartition the
data when scaling up as with many NoSQL solutions.

• Finally, VoltDB Enterprise Edition provides features to ensure durability and high availability through
command logging, locally replicating partitions (K-safety), and wide-area database replication.

Each of these features is described, in detail, in the Using VoltDB manual. This book explains how to use
these and other features to manage and maintain a VoltDB database cluster from a database administrator's
perspective.

1.1. Getting Started
The main difference between VoltDB and traditional database products from an administration perspective
is that you must define the database schema before you start the database. There is no such thing as starting
an "empty" database server.

To start a VoltDB database cluster, you need two files:

Application Catalog The compiled database schema and stored procedures. The application cat-
alog defines the logical structure of the database, including the tables, in-
dexes, partitioning, and so on.

Deployment File The configuration settings for the cluster. The deployment file defines the
physical structure of the database cluster, including the size of the cluster,
what availability, durability, and security options will be enabled, and so
on.

In general, the application catalog is produced as part of the database development process, which is
described in the Using VoltDB manual. This book assumes you have a completed catalog.

The deployment file, on the other hand, defines the run-time configuration of the cluster. Establishing the
correct settings for the deployment file and physically managing the database cluster is the duty of the
administrators who are responsible for maintaining database operations. This book is written for those
individuals and covers the standard procedures associated with database administration.

1.2. Understanding the VoltDB Utilities
VoltDB provides several command line utilities, each with a different function. Familiarizing yourself with
these utilities and their uses can make managing VoltDB databases easier. The three primary command
line tools for creating, managing, and testing VoltDB databases are:

https://voltdb.com/docs/UsingVoltDB/
https://voltdb.com/docs/UsingVoltDB/

Managing VoltDB Databases

2

voltdb Compiles application catalogs and starts the VoltDB database process. The voltdb
command can also collect log files for analyzing possible system errors (see Sec-
tion 6.3.1, “Collecting Log Files Using the Command Line” for details).

The voltdb command runs locally and does not require a running database.

voltadmin Issues administrative commands to a running VoltDB database. You can use voltad-
min to save and restore snapshots, pause and resume admin mode, and to shutdown
the database, among other tasks.

The voltadmin command can be run remotely, performs cluster-wide operations and
requires a running database to connect to.

sqlcmd Lets you issue SQL queries and invoke stored procedures interactively. The sqlcmd
command is handy for testing database access without having to write a client ap-
plication.

The sqlcmd command can be run remotely and requires a running database to con-
nect to.

In addition to the preceding general-purpose tools, VoltDB provides several other tools for specific tasks:

csvloader Loads records from text files into an existing VoltDB database. The command's
primary use is for importing data into VoltDB from CSV and other text-based data
files that were exported from other data utilities,

The csvloader command can be run remotely and requires a running database to
connect to.

dragent Starts the database replication agent, initiating replication between a master and a
replica database.

The dragent command is run separately from the database servers but requires both
a running master database and replica database.

snapshotconvert Converts native snapshot files to csv or tabbed text files. The snapshotconvert com-
mand is useful when exporting a snapshot in native format to text files for import
into another data utility. (This utility is provided for legacy purposes. It is now pos-
sible to write snapshots directly to CSV format without post-processing, which is
the recommended approach.)

The snapshotconvert command runs locally and does not require a running database.

snapshotverify Verifies that a set of native snapshot files are complete and valid.

The snapshotverify command runs locally and does not require a running database.

1.3. Management Tasks
Database administration responsibilities fall into five main categories, as described in Table 1.1, “Database
Management Tasks”. The following chapters are organized by category and explain how to perform each
task for a VoltDB database.

Table 1.1. Database Management Tasks

Preparing the Servers Before starting the database, you must make sure that the server hardware and
software is properly configured. This chapter provides a checklist of tasks to
perform before starting VoltDB.

Managing VoltDB Databases

3

Basic Database Opera-
tions

The basic operations of starting and stopping the database. This chapter de-
scribes the procedures needed to handle these fundamental tasks.

Maintenance and Up-
grades

Over time, both the cluster and the database may require maintenance — either
planned or emergency. This chapter explains the procedures for performing
hardware and software maintenance, as well as standard maintenance, such
as backing up the database and upgrading the hardware, the software, and the
database schema.

Performance Monitoring Another important role for many database administrators is monitoring data-
base performance. Monitoring is important for several reasons:

• Performance Analysis

• Load Balancing

• Fault Detection

This chapter describes the tools available for monitoring VoltDB databases.

Problem Reporting &
Analysis

If an error does occur and part or all of the database cluster fails, it is not only
important to get the database up and running again, but to diagnose the cause
of the problem and take corrective actions. VoltDB produces a number of log
files that can help with problem resolution. This chapter describes the different
logs that are available and how to use them to diagnose database issues.

4

Chapter 2. Preparing the Servers
VoltDB is designed to run on commodity servers, greatly reducing the investment required to operate
a high performance database. However, out of the box, these machines are not necessarily configured
for optimal performance of a dedicated, clustered application like VoltDB. This is especially true when
using cloud-based services. This chapter provides best practices for configuring servers to maximize the
performance and stability of your VoltDB installation.

2.1. Server Checklist
The very first step in configuring the servers is making sure you have sufficient memory, computing power,
and system resources such as disk space to handle the expected workload. The VoltDB Planning Guide
provides detailed information on how to size your server requirements.

The next step is to configure the servers and assign appropriate resources for VoltDB tasks. Specific server
features that must be configured for VoltDB to perform optimally are:

• Install required software

• Configure memory management

• Turn off TCP Segmentation

• Configure NTP (time services)

• Define network addresses for all nodes in the cluster

• Assign network ports

2.2. Install Required Software
To start, VoltDB requires a recent release of the Linux operating system. The supported operating systems
for running production VoltDB databases are:

• CentOS V6.3 or later. Including CentOS 7.0

• Red Hat V6.3 or later, including Red Hat 7.0

• Ubuntu 10.041, 12.04, and 14.4

It may be possible to run VoltDB on other versions of Linux. Also, an official release for Macintosh OS X
10.7 and later is provided for development purposes. However, the preceding operating system versions
are the only fulled tested and supported base platforms for running VoltDB in production.

In addition to the base operating system, VoltDB requires the following software at a minimum:

• Java 7 or 8

• NTP

• Python 2.4 or later

1Support for Ubuntu 10.04 is deprecated and will be removed in an upcoming release.

http://docs.voltdb.com/PlanningGuide/

Preparing the Servers

5

Sun Java SDK 7 or later is recommended. OpenJDK 7 or later is also supported. Note that the VoltDB
server requires Java 7 or 8; however, the Java client is also compatible with Java 6.

VoltDB requires the system clocks on all cluster nodes be synchronized to within 100 milliseconds. NTP,
the Network Time Protocol, is recommended for achieving the necessary synchronization. NTP is installed
and enabled by default on many operating systems. However, the configuration may need adjusting (see
Section 2.5, “Configure NTP” for details) and in cloud instances where hosted servers are run in a virtual
environment, NTP is not always installed or enabled by default. Therefore you need to do this manually.

Finally, VoltDB implements its command line interface through Python. Python 2.4 or later is required
to use the VoltDB shell commands.

2.3. Configure Memory Management
Because VoltDB is an in-memory database, proper memory management is vital to the effective operation
of VoltDB databases. Two important aspects of memory management are:

• Swapping

• Virtual memory

The following sections explain how best to configure these features for optimal performance of VoltDB.

2.3.1. Disable Swapping

Swapping is an operating system feature that optimizes memory usage when running multiple processes
by swapping processes in and out of memory. However, any contention for memory, including swapping,
will have a very negative impact on VoltDB performance and functionality. You should disable swapping
when using VoltDB.

To disable swapping on Linux systems, use the swapoff command. If swapping cannot be disabled for
any reason, you can reduce the likelihood of VoltDB being swapped out by setting the kernel parameter
vm.swappiness to zero.

2.3.2. Enable Virtual Memory Mapping and Overcommit

Although swapping is bad for memory-intensive applications like VoltDB, the server does make use of vir-
tual memory (VM) and there are settings that can help VoltDB make effective use of that memory. First, it is
a good idea to enable VM overcommit. This avoids VoltDB encountering unnecessary limits when manag-
ing virtual memory. This is done on Linux by setting the system parameter vm.overcommit_memory
to a value of "1".

$ sysctl -w vm.overcommit_memory=1

Second, for large memory systems, it is also a good idea to increase the VM memory mapping limit. So
for servers with 64 Gigabytes or more of memory, the recommendation is to increase VM memory map
count to 1048576. You do this on Linux with the system parameter max_map_count. For example:

$ sysctl -w vm.max_map_count=1048576

Remember that for both overcommit and the memory map count, the parameters are only active while the
system is running and will be reset to the default on reboot. So be sure to add your new settings to the file
/etc/sysctl.conf to ensure they are in effect when the system is restarted.

Preparing the Servers

6

2.4. Turn off TCP Segmentation
Under certain conditions, the use of TCP segmentation offload (TSO) and generic receive offload (GRO)
can cause nodes to randomly drop out of a cluster. The symptoms of this problem are that nodes timeout
— that is, the rest of the cluster thinks they have failed — although the node is still running and no other
network issues (such as a network partition) are the cause.

Disabling TSO and GRO is recommended for any VoltDB clusters that experience such instability. The
commands to disable offloading are the following, where N is replaced by the number of the ethernet card:

ethtool -K ethN tso off
ethtool -K ethN gro off

Note that these commands disable offloading temporarily. You must issue these commands every time the
node reboots or, preferably, put them in a startup configuration file.

2.5. Configure NTP
To orchestrate activities between the cluster nodes, VoltDB relies on the system clocks being synchro-
nized. Many functions within VoltDB — such as cluster start up, nodes rejoining, and schema updates
among others — are sensitive to variations in the time values between nodes in the cluster. Therefore, it
is important to keep the clocks synchronized within the cluster. Specifically:

• The server clocks within the cluster must be synchronized to within 100 milliseconds of each other when
the cluster starts. (Ideally, skew between nodes should be kept under 10 milliseconds.)

• Time must not move backwards

The easiest way to achieve these goals is to install and configure the NTP (Network Time Protocol) service
to use a common time host server for synchronizing the servers. NTP is often installed by default but may
require additional configuration to achieve acceptable synchronization. Specifically, listing only one time
server (and the same one for all nodes in the cluster) ensures minimal skew between servers. You can even
establish your own time server to facilitate this. All nodes in the cluster should also list each other as peers.
For example, the following NTP configuration file uses a local time server (myntpsvr) and establishes all
nodes in the cluster as peers:

server myntpsvr burst iburst minpoll 4 maxpoll 4

peer voltsvr1 burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1

See the chapter on Configuring NTP in the Performance Guide for more details on setting up NTP.

2.6. Configure the Network
It is also important to ensure that the network is configured correctly so all of the nodes in the VoltDB
cluster recognize each other. If the DNS server does not contain entries for all of the servers in the cluster,
an alternative is to add entries in the /etc/hosts file locally for each server in the cluster. For example:

12.24.48.101 voltsvr1

https://voltdb.com/docs/PerfGuide/ChapNtp.php
https://voltdb.com/docs/PerfGuide/

Preparing the Servers

7

12.24.48.102 voltsvr2
12.24.48.103 voltsvr3
12.24.48.104 voltsvr4
12.24.48.105 voltsvr5

2.7. Assign Network Ports
VoltDB uses a number of network ports for functions such as internal communications, client connections,
rejoin, database replication, and so on. For these features to perform properly, the ports must be open and
available. Review the following list of ports to ensure they are open and available (that is, not currently
in use).

Function Default Port
Number

Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Internal Server Port 3021

Log Port 4560

JMX Port 9090

Replication Port 5555, 5556,
5557

Zookeeper port 2181

Alternately, you can reassign the port numbers that VoltDB uses. See Section A.5, “Network Ports” for
a description of the ports and how to reassign them.

8

Chapter 3. Starting and Stopping the
Database

The fundamental operations for database administration are starting and stopping the database. The one
significant difference between VoltDB and other database systems is that you do not start the database
management system, or DBMS, separate from the database itself. When you start VoltDB, you start it with
a specific database schema, as defined in the application catalog.

You also need to decide what database features you want to configure before starting the database. This
includes the size of the cluster, what amount of replication you want to use to increase availability in case
of server failure, and what level of durability is required for those cases where the database itself stops.
These settings are defined in the deployment file.

This chapter explains how to configure the cluster physical structure and database features in the deploy-
ment file and how to start and stop the database.

3.1. Configuring the Cluster and Database
You specify the cluster configuration and what features to use in the deployment file, which is an XML
file that you can create and edit manually. In the simplest case, the deployment file specifies how many
servers the cluster has initially, how many partitions to create on each server, and what level of availability
(K-safety) to use. For example:

<?xml version="1.0"?>
<deployment>
 <cluster hostcount="5"
 sitesperhost="4"
 kfactor="1"
 />
</deployment>

• The hostcount attribute specifies the number of servers the cluster will start with.

• The sitesperhost attribute specifies the number of partitions (or "sites") to create on each server.
The optimal number of sites per host is affected by the number of processors per machine and is best
determined by performance testing against the expected workload. See the chapter on "Benchmarking"
in the VoltDB Planning Guide for details.

• The kfactor attribute specifies the K-safety value to use. The higher the K-safety value, the more
node failures the cluster can withstand without affecting database availability. However, increasing the
K-safety value increases the number of copies of each unique partition. High availability is a trade-
off between replication to protect against node failure and the number of unique partitions, therefore
throughput performance. See the chapter on availability in the Using VoltDB manual for more informa-
tion on determining an optimal K-safety value.

In addition to the cluster configuration, you can use the deployment file to enable and configure specific
database features such as export, command logging, and so on. The following table summarizes some of
the key features that are settable in the deployment file.

http://docs.voltdb.com/PlanningGuide/ChapBenchmark.php
http://docs.voltdb.com/PlanningGuide/
https://voltdb.com/docs/UsingVoltDB/ChapKSafety.php
https://voltdb.com/docs/UsingVoltDB/

Starting and Stopping the Database

9

Table 3.1. Configuring Database Features in the Deployment File

Feature Example

Command Logging — Command logging
provides durability by logging transactions to
disk so they can be replayed during a recov-
ery. You can configure the type of command
logging (synchronous or asynchronous), the
log file size, and the frequency of the logs (in
terms of milliseconds or number of transac-
tions).

<commandlog enabled="true"
 synchronous="false">
 <frequency time="300"
 transactions="1000"/>
</commandlog>

Snapshots — Automatic snapshot provide an-
other form of durability by creating snapshots
of the database contents, that can be restored
later. You can configure the frequency of the
snapshots, the unique file prefix, and how
many snapshots are kept at any given time.

<snapshot enabled="true"
 frequency="30m"
 prefix="mydb"
 retain="3" />

Export — Export allows you to write selected
records from the database to an external target,
which can be files, another database (through
JDBC) or a custom export connector. You can
configure the type of export as well as oth-
er properties, which are specific to each tar-
get type. For example, the file target requires
a specific type (or format) for the files and a
unique identifier called a "nonce".

<export enabled="true"
 target="file">
 <configuration>
 <property name="type">csv</property>
 <property name="nonce">mydb</property>
 </configuration>
</export>

Security & Accounts — Security lets you
protect your database against unwanted ac-
cess by requiring all connections authenticate
against known usernames and passwords. In
the deployment file you can define the user ac-
counts and passwords and what role or roles
each user fulfills. Roles define what permis-
sions the account has. Roles are defined in the
application catalog.

<security enabled="true"/>
<users>
 <user name="admin"
 password="superman"
 roles="dev,ops"/>
 <user name="mitty"
 password="thurber"
 roles="user"/>
</users>

File Paths — Paths define where VoltDB
writes any files or other disc-based content.
You can configure the default root for all files
as well as specific paths for each type of ser-
vice, such as snapshots, command logs, export
overflow, etc.

<paths>
 <voltdbroot path="/tmp/vroot" />
 <snapshots path="/opt/archive" />
</paths>

3.2. Starting the Database
Once you have an application catalog and a deployment file, you start a VoltDB database cluster1 for the
first time using the voltdb create command. You issue this command, specifying the same application
catalog, deployment file, and host on each node of the cluster. For example:

$ voltdb create myapplication.jar \

1When testing with a single server, several of the command line arguments have defaults and can be left out. However, in production when starting
a multi-node cluster, the arguments are required.

Starting and Stopping the Database

10

 --deployment=deployment.xml \
 --host=voltsvr1 \
 --license=~/license.xml

On the command line, you specify four arguments:

The application catalog, which contains the schema for the database and any stored procedure def-
initions
The deployment file, which specifies the physical layout of the cluster and configures specific Volt-
DB features
One node of the cluster identified as the "host", to coordinate the initial startup of the cluster
The license file (when using the VoltDB Enterprise Edition)

What happens when you start the database is that each server contacts the named "host" server. The host
then:

1. Waits until the necessary number of servers (as specified in the deployment file) are connected

2. Creates the network mesh between the servers

3. Distributes the catalog and deployment file to ensure all nodes are using the same configuration

At this point, the cluster is fully initialized and the "host" ends its special role and becomes a peer to all
the other nodes. All nodes in the cluster then write an informational message to the console verifying that
the database is ready:

Server completed initialization.

3.3. Stopping the Database
How you choose to stop a VoltDB depends on what features you have enabled. For example, if you do
not have any durability features enabled (such as auto snapshots or command logging), it is strongly rec-
ommended that you pause the database and take a manual snapshot before shutting down, so you preserve
the data across sessions.

If you have command logging enabled, a manual snapshot is not necessary. However, it is still a good
idea to pause the database before shutting down to ensure that all active client queries have a chance to
complete and return their results (and no new queries start) before the shutdown occurs.

To pause and shutdown the cluster you can use the voltadmin pause and shutdown commands:

$ voltadmin pause
$ voltadmin shutdown

As with all voltadmin commands, you can use them remotely by specifying one of the cluster servers on
the command line:

$ voltadmin pause --host=voltsvr2
$ voltadmin shutdown --host=voltsvr2

If security is enabled, you will also need to specify a username and password for a user with sysproc
permissions:

$ voltadmin pause --host=voltsvr2 -u root -p Suda51
$ voltadmin shutdown --host=voltsvr2 -u root -p Suda51

Starting and Stopping the Database

11

Finally, if you are not using the durability features of automatic snapshots or command logging, you should
perform a manual snapshot using the save command after pausing and before shutting down. Use the --
blocking flag to ensure the snapshot completes before the shutdown occurs:

$ voltadmin pause
$ voltadmin save --blocking /tmp/voltdb backup
$ voltadmin shutdown

3.4. Restarting the Database
Restarting a VoltDB database is different than starting it for the first time. How you restart the database
depends on what durability features were in effect previously.

If you just use the voltdb create command, you create a new, empty database. Because VoltDB keeps
its data in memory, to return the database to its last known state — including its content — you need to
restore the data from a saved copy.

If you are using automatic snapshots or command logging, VoltDB can automatically reinstate the data
when you use the voltdb recover command:

$ voltdb recover --deployment=deployment.xml \
 --host=voltsvr1 \
 --license=~/license.xml

Because the schema is saved with the data, you do not need to specify an application catalog when recov-
ering a previous database session. However, just as when starting a database for the first time, you must
invoke the recover command on all nodes of the cluster before the database can start,

When you recover a VoltDB database, the cluster performs the same initial coordination activities as when
creating a new database: the host node facilitates establishing a quorum and ensures all nodes connect.
Then the database servers restore the most recent snapshot plus (if command logging is enabled) the last
logged transactions. Once all data is restored, the database enables client access.

If you are not using automatic snapshots or command logging, you must restore the last snapshot manually.
You do this with the following procedure:

1. Start a new database using the voltdb create command on each server as described in Section 3.2,
“Starting the Database”.

2. Use the voltadmin pause, restore, and resume commands to pause the database, restore the last snap-
shot, and then resume client activity.

For example, if the last snapshot was saved in /tmp/voltdb using the unique ID backup, you can
restore the data with the following commands:

$ voltadmin pause
$ voltadmin restore /tmp/voltdb backup
$ voltadmin resume

12

Chapter 4. Maintenance and Upgrades
Once the database is running, it is the administrator's role to keep it running. This chapter explains how
to perform common maintenance and upgrade tasks, including:

• Database backups

• Schema and stored procedure updates

• Software and hardware upgrades

4.1. Backing Up the Database
It is a common safety precaution to backup all data associated with computer systems and store copies off-
site in case of system failure or other unexpected events. Backups are usually done on a scheduled basis
(every day, every week, or whatever period is deemed sufficient).

VoltDB provides several options for backing up the database contents. The easiest option is to save a
native snapshot then backup the resulting snapshot files to removable media for archiving. The advantage
of this approach is that native snapshots contain both a complete copy of the data and the schema. So
in case of failure the snapshot can be restored to the current or another cluster using a single voltadmin
restore command.

The key thing to remember when using native snapshots for backup is that each server saves its portion
of the database locally. So you must fetch the snapshot files for all of the servers to ensure you have a
complete set of files. The following example performs a manual snapshot on a five node cluster then uses
scp to remotely copy the files from each server to a single location for archiving.

$ voltadmin save --blocking --host=voltsvr3 \
 /tmp/voltdb backup
$ scp 'voltsvr1:/tmp/voltdb/backup*' /tmp/archive/
$ scp 'voltsvr2:/tmp/voltdb/backup*' /tmp/archive/
$ scp 'voltsvr3:/tmp/voltdb/backup*' /tmp/archive/
$ scp 'voltsvr4:/tmp/voltdb/backup*' /tmp/archive/
$ scp 'voltsvr5:/tmp/voltdb/backup*' /tmp/archive/

Note that if you are using automated snapshots or command logging (which also creates snapshots), you
can use the automated snapshots as the source of the backup. However, the automated snapshots use a
programmatically generated file prefix, so your backup script will need some additional intelligence to
identify the most recent snapshot and its prefix.

Finally, if you wish to backup the data in a non-proprietary format, you can use the voltadmin save --
format=csv command to create a snapshot of the data as comma-separated value (CSV) formatted text
files. The advantage is that the resulting files are usable by more systems than just VoltDB. The disadvan-
tage is that the CSV files only contain the data, not the schema. These files cannot be read directly into
VoltDB, like a native snapshot can. Instead, you will need to create a new database then use the csvloader
utility to load individual files into each table to restore the database completely.

4.2. Updating the Database Schema
As an application evolves, the database schema often needs changing. This is particularly true during
the early stages of development and testing but also happens periodically with established applications,
as the database is tuned for performance or adjusted to meet new requirements. In the case of VoltDB,

Maintenance and Upgrades

13

these updates may involve changes to the table definitions, to the indexes, or to the stored procedures. The
following sections explain how to:

• Perform live schema updates

• Change unique indexes and partitioning using save and restore

4.2.1. Performing Live Schema Updates
There are two ways to update the database schema for a VoltDB database: live updates and save/restore
updates. For most updates, you can update the schema while the database is running. To perform this type
of live update, use the following steps:

1. Compile a new application catalog containing the updated schema and stored procedures

2. Use the voltdb update command, specifying the new catalog and existing deployment file, to update
the database

For example:

$ voltdb compile -o newcatalog.jar myschema.sql
$ voltadmin update --host=voltsvr3 newcatalog.jar deployment.xml

You can use live updates to perform the following actions:

• Add, remove, and update stored procedures

• Add and remove tables

• Add, remove, and in many cases change the datatype of individual columns in a table

• Add, remove, and update indexes

The only limitation on indexes is that you cannot add or broaden a unique index, since there may already
be content within the database that would violate the new constraint.

Two other limitations on live schema updates are that you cannot rename tables or columns and you cannot
change the partitioning of tables. That is, you cannot change a partitioned table to replicated, a replicated
table to partitioned, or change the partitioning column of an existing partitioned table. However, you can
change partitioning using the save and restore commands, as described in the following section.

4.2.2. Performing Updates Using Save and Restore
If you need to add unique indexes, add columns to an existing unique index, or change the partitioning
of your database tables, you must use the voltadmin save and restore commands to perform the schema
update. This requires shutting down and restarting the database to allow VoltDB to repartition the data
and validate any new constraints.

To perform a schema update using save and restore, use the following steps:

1. Compile a new application catalog containing the updated schema and stored procedures.

2. Pause the database (voltadmin pause).

3. Create a snapshot of the database contents (voltadmin save).

4. Shutdown the database (voltadmin shutdown).

Maintenance and Upgrades

14

5. Create a new database using the voltdb create option, the newly recompiled catalog, and starting in
admin mode (specified in the deployment file).

6. Restore the snapshot created in Step #3 (voltadmin restore).

7. Return the database to normal operations (voltadmin resume).

For example:

$ voltdb compile -o newcatalog.jar myschema.sql
$ voltadmin pause
$ voltadmin save --blocking /opt/archive/ mydb
$ voltadmin shutdown

$ # Issue next command on all servers
$ voltdb create newcatalog.jar \
 --deployment=deployment.xml \
 --host=voltsvr1 \
 --license=~/license.xml

$ # Issue only once
$ voltadmin restore /opt/archive mydb
$ voltadmin resume

The key point to remember when changing unique indexes is that if you add new constraints, there is the
possibility that the restore operation will fail if existing records violate the new constraint. This is why it
is important to make sure your database contents are compatible with the new schema before performing
the update.

4.3. Upgrading the Cluster
Sometimes you need to update or reconfigure the server infrastructure on which the VoltDB database is
running. Server upgrades are one example. A server upgrade is when you need to fix or replace hardware,
update the operating system, or otherwise modify the underlying system. Server upgrades usually require
stopping the VoltDB database process on the specific server being serviced.

Another example is when you want to reconfigure the cluster as a whole. Reasons for reconfiguring the
cluster are because you want to add or remove servers from the cluster or you need to modify the number
of partitions per server that VoltDB uses.

Adding servers to the cluster can happen without stopping the database. This is called elastic scaling.
Removing servers or changing the number of sites per host requires restarting the cluster during a main-
tenance window.

The following sections describe three cases of cluster upgrades:

• Performing server upgrades

• Adding servers to a running cluster through elastic scaling

• Reconfiguring the cluster with a maintenance window

4.3.1. Performing Server Upgrades
If you need to upgrade or replace the hardware or software (such as the operating system) of the individual
servers, this can be done without taking down the database as a whole. As long as the server is running

Maintenance and Upgrades

15

with a K-safety value of one or more, it is possible to take a server out of the cluster without stopping the
database. You can then fix the server hardware, upgrade software (other than VoltDB), even replace the
server entirely with a new server, then bring the server back into the cluster.

To perform a server upgrade:

1. Stop the VoltDB server process on the server. As long as the cluster is K-safe, the rest of the cluster
will continue running.

2. Perform the necessary upgrades.

3. Have the server rejoin the cluster using the voltdb rejoin command.

The rejoin command starts the database process on the server, contacts the database cluster, then copies the
necessary partition content from other cluster nodes so the server can then participate as a full member of
the cluster, While the server is rejoining, the other database servers remain accessible and actively process
queries from client applications.

When rejoining a cluster you must specify a host server that the rejoining node will connect to. The host
can be any server still in the cluster; it does not have to be the same host specified when the cluster was
initially started. For example:

$ voltdb rejoin --host=voltsvr4 \
 --deployment=deployment.xml \
 --license=~/license.xml

Note that you do not need to specify the application catalog. It is downloaded from the other cluster nodes
as part of the rejoin operation.

If you need to upgrade all of the servers in the cluster (for example, if you are upgrading the operating
system), the easiest method is to upgrade the servers one at a time, taking each server out of the cluster,
upgrading it, then rejoining it to the cluster. This way the entire cluster can be upgraded without losing
any availability to the database.

If the cluster is not K-safe — that is, the K-safety value is 0 — then you must follow the instructions in
Section 4.3.3, “Reconfiguring the Cluster During a Maintenance Window” to upgrade the servers.

4.3.2. Adding Servers to a Running Cluster with Elastic Scal-
ing

If you want to add servers to a VoltDB cluster — usually to increase performance and/or capacity — you
can do this without having to restart the database. You add servers to the cluster with the voltdb add
command, specifying one of the existing nodes with the --host flag. For example:

$ voltdb add --host=voltsvr4 \
 --license=~/license.xml

You must add a full complement of servers to match the K-safety value (K+1) before the servers can
participate in the cluster. For example, if the K-safety value is 2, you must add 3 servers before they
actually become part of the cluster and the cluster rebalances its partitions.

When you add servers to a VoltDB database, the cluster performs the following actions:

1. The new servers are added to the cluster configuration and sent copies of the application catalog and
deployment file.

Maintenance and Upgrades

16

2. Once sufficient servers are added, copies of all replicated tables and their share of the partitioned tables
are sent to the new servers.

3. As the data is rebalanced, the new servers begin processing transactions for the partition content they
have received.

4. Once rebalancing is complete, the new servers are full members of the cluster.

4.3.3. Reconfiguring the Cluster During a Maintenance Win-
dow

If you want to remove servers from the cluster permanently (as opposed to temporarily removing them for
maintenance as described in Section 4.3, “Upgrading the Cluster”) or you want to change other cluster-wide
attributes, such as the number of partitions per server, you need to restart the server. Stopping the database
temporarily to perform this sort of reconfiguration is known as a maintenance window.

The steps for reconfiguring the cluster with a maintenance window are:

1. Place the database in admin mode (voltadmin pause).

2. Perform a manual snapshot of the database (voltadmin save).

3. Shutdown the database (voltadmin shutdown).

4. Make the necessary changes to the deployment file.

5. Start a new database using the voltdb create option, the existing catalog, and the edited deployment file.

6. Restore the snapshot created in Step #2 (voltadmin restore).

7. Return the database to normal operations (voltadmin resume).

4.4. Upgrading VoltDB Software
Finally, as new versions of VoltDB become available, you will want to upgrade the VoltDB software on
your database cluster. The steps for upgrading the VoltDB software on a database cluster are:

1. Place the database in admin mode (voltadmin pause).

2. Perform a manual snapshot of the database (voltadmin save).

3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB on all cluster nodes.

5. Start a new database using the voltdb create option, your existing application catalog, and starting in
admin mode (specified in the deployment file).

6. Restore the snapshot created in Step #2 (voltadmin restore).

7. Return the database to normal operations (voltadmin resume).

17

Chapter 5. Monitoring VoltDB Databases
Monitoring is an important aspect of systems administration. This is true of both databases and the infra-
structure they run on. The goals for database monitoring include ensuring the database meets its expected
performance target as well as identifying and resolving any unexpected changes or infrastructure events
(such as server failure or network outage) that can impact the database. This chapter explains:

• How to monitor overall database health and performance using VoltDB

• How to integrate VoltDB monitoring with other enterprise monitoring infrastructures

5.1. Monitoring Overall Database Activity
VoltDB provides several tools for monitoring overall database activity. The following sections describe
the two primary monitoring tools within VoltDB:

• VoltDB Management Console

• System Procedures

5.1.1. VoltDB Management Console
http://voltserver:8080/

The VoltDB Management Console provides a graphical display of key aspects of database performance,
including throughput, memory usage, query latency, and partition usage. To use the Management Console,
connect to one of the cluster nodes using a web browser, specifying the HTTP port (8080 by default)
as shown in the example URL above. The Management Console shows graphs for cluster throughput
and latency as well as CPU and memory usage for the current server. You can also use the Management
Console to examine the database schema and to issue ad hoc SQL queries.

5.1.2. System Procedures
VoltDB provides callable system procedures that return detailed information about the usage and perfor-
mance of the database. In particular, the @Statistics system procedure provides a wide variety of informa-
tion depending on the selector keyword you give it. Some selectors that are particularly useful for moni-
toring include the following:

• MEMORY — Provides statistics about memory usage for each node in the cluster. Information includes
the resident set size (RSS) for the server process, the Java heap size, heap usage, available heap memory,
and more. This selector provides the type of information displayed by the Process Memory Report,
except that it returns information for all nodes of the cluster in a single call.

• PROCEDUREPROFILE — Summarizes the performance of individual stored procedures. Informa-
tion includes the minimum, maximum, and average execution time as well as the number of invocations,
failures, and so on. The information is summarized from across the cluster as whole. This selector re-
turns information similar to the latency graph in VoltDB Management Center.

• TABLE — Provides information about the size, in number of tuples and amount of memory consumed,
for each table in the database. The information is segmented by server and partition, so you can use
it to report the total size of the database contents or to evaluate the relative distribution of data across
the servers in the cluster.

When using the @Statistics system procedure with the PROCEDUREPROFILE selector for monitoring,
it is a good idea to set the second parameter of the call to "1" so each call returns information since the

Monitoring VoltDB Databases

18

last call. In other words, statistics for the interval since the last call. Otherwise, if the second parameter is
"0", the procedure returns information since the database started and the aggregate results for minimum,
maximum, and average execution time will have little meaning.

When calling @Statistics with the MEMORY or TABLE selectors, you can set the second parameter to
"0" since the results are always a snapshot of the memory usage and table volume at the time of the call. For
example, the following Python script uses @Statistics with the MEMORY and PROCEDUREPROFILE
selectors to check for memory usage and latency exceeding certain limits. Note that the call to @Statistics
uses a second parameter of 1 for the PROCEDUREPROFILE call and a parameter value of 0 for the
MEMORY call.

import sys
from voltdbclient import *

nano = 1000000000.0
memorytrigger = 4 * (1024*1024) # 4gbytes
avglatencytrigger = .01 * nano # 10 milliseconds
maxlatencytrigger = 2 * nano # 2 seconds

server = "localhost"
if (len(sys.argv) > 1): server = sys.argv[1]

client = FastSerializer(server, 21212)
stats = VoltProcedure(client, "@Statistics",
 [FastSerializer.VOLTTYPE_STRING,
 FastSerializer.VOLTTYPE_INTEGER])

Check memory
response = stats.call(["memory", 0])
for t in response.tables:
 for row in t.tuples:
 print 'RSS for node ' + row[2] + "=" + str(row[3])
 if (row[3] > memorytrigger):
 print "WARNING: memory usage exceeds limit."

Check latency
response = stats.call(["procedureprofile", 1])
avglatency = 0
maxlatency = 0
for t in response.tables:
 for row in t.tuples:
 if (avglatency < row[4]): avglatency = row[4]
 if (maxlatency < row[6]): maxlatency = row[6]
print 'Average latency= ' + str(avglatency)
print 'Maximum latency= ' + str(maxlatency)
if (avglatency > avglatencytrigger):
 print "WARNING: Average latency exceeds limit."
if (maxlatency > maxlatencytrigger):
 print "WARNING: Maximum latency exceeds limit."

client.close()

The @Statistics system procedure is the the source for many of the monitoring options discussed in this
chapter. Two other system procedures, @SystemCatalog and @SystemInformation, provide general in-

Monitoring VoltDB Databases

19

formation about the database schema and cluster configuration respectively and can be used in monitoring
as well.

The system procedures are useful for monitoring because they let you customize your reporting to whatever
level of detail you wish. The other advantage is that you can automate the monitoring through scripts or
client applications that call the system procedures. The downside, of course, is that you must design and
create such scripts yourself. As an alternative for custom monitoring, you can consider integrating VoltDB
with existing third party monitoring applications, as described in next section.

5.2. Integrating VoltDB with Other Monitoring
Systems

In addition to the tools and system procedures that VoltDB provides for monitoring the health of your
database, you can also integrate this data into third-party monitoring solutions so they become part of your
overall enterprise monitoring architecture. VoltDB supports integrating VoltDB statistics and status with
the following monitoring systems:

• Ganglia

• JMX

• Nagios

• New Relic

5.2.1. Integrating with Ganglia
If you use Ganglia as your monitoring tool and the VoltDB Enterprise Manager as your database admin-
istration tool, the two products integrate seamlessly to provide VoltDB performance data to the Ganglia
monitoring interface. Ganglia is a distributed monitoring system that provides a graphical interface to dis-
tributed clusters of systems. If Ganglia is present, VoltDB and the Enterprise Manager act as a data source
for the Ganglia system.

To use VoltDB with Ganglia, make sure:

• The Ganglia Monitoring Daemon (gmond) is installed and configured on each VoltDB cluster node.

• The Ganglia Meta Daemon (gmetad) is installed and configured on the server running the VoltDB
Enterprise Manager.

Having completed these steps, the VoltDB Enterprise Manager will automatically generate data for the
Ganglia monitoring system. See the Ganglia web site (http://ganglia.sourceforge.net/) for
more information about Ganglia.

5.2.2. Integrating Through JMX
VoltDB Enterprise Edition uses the Java Management Extensions (JMX) to send statistics from the data-
base nodes to the VoltDB Enterprise Manager. The VoltDB JMX interface is also available to other mon-
itoring frameworks that want to query for VoltDB statistics.

VoltDB Enterprise Edition servers open the JMX interface on port 9090 by default (you can change the
port number, see Section A.5.6, “JMX Port” for details). Clients can either poll on this port for specific
information or subscribe to messages that are sent approximately every second.

Monitoring VoltDB Databases

20

The information sent over the JMX interface is the same as that available through existing VoltDB system
procedures, such as @SystemInformation, @Statitstics, and @SnapshotStatus. The difference is that the
JMX interface is a lightweight process and is not transactional, as system procedures are. Therefore the
JMX interface produces less load on the servers than repeated calls to the system procedures would.

The easiest way to become familiar with the JMX interface is to connect to a running database using the
Java Monitoring and Management Console (also known as Jconsole) and browse through the structures
returned by the VoltDB servers.

5.2.3. Integrating with Nagios
If you use Nagios to monitor your systems and services, you can include VoltDB in your monitoring
infrastructure. VoltDB Enterprise Edition provides Nagios plugins that let you monitor four key aspects of
VoltDB. The plugins are included in a subfolder of the tools directory where VoltDB is installed. Table 5.1,
“Nagios Plugins” lists each plugin and what it monitors.

Table 5.1. Nagios Plugins

Plugin Monitors Scope Description

check_voltdb_ports Availability Server Reports whether the specified server is reachable
or not.

check_voltdb_memory Memory
usage

Server Reports on the amount of memory in use by Volt-
DB for a individual node. You can specify the
severity criteria as a percentage of total memory.

check_voltdb_cluster K-safety Clus-
ter-wide

Reports on whether a K-safe cluster is complete or
not. That is, whether the cluster has the full com-
plement of nodes or if any have failed and not re-
joined yet.

check_voltdb_replication Database
replication

Clus-
ter-wide

Reports the status of database replication. Con-
nect the plugin to one or more nodes on the master
database.

Note that the httpd and JSON options must be enabled in the deployment file for the VoltDB database for
the Nagios plugins to query the database status.

5.2.4. Integrating with New Relic
If you use New Relic as your monitoring tool, there is a VoltDB plugin to include monitoring of VoltDB
databases to your New Relic dashboard. To use the New Relic plugin, you must:

• Define the appropriate configuration for your server.

• Start the voltdb-newrelic process that gathers and sends data to New Relic.

You define the configuration by editing and renaming the template files that can be found in the /tools
/monitoring/newrelic/config folder where VoltDB is installed. The configuration files let you
specify your New Relic license and which databases are monitored. A README file in the /newrelic
folder provides details on what changes to make to the configuration files.

You start the monitoring process by running the script voltdb-newrelic that also can be found in
the/newrelic folder. The script must be running for New Relic to monitor your databases.

21

Chapter 6. What to Do When Problems
Arise

As with any high performance application, events related to the database process, the operating system, and
the network environment can impact how well or poorly VoltDB performs. When faced with performance
issues, or outright failures, the most important task is identifying and resolving the root cause. VoltDB
and the server produce a number of log files and other artifacts that can help you in the diagnosis. This
chapter explains:

• Where to look for log files and other information about the VoltDB server process

• What to do when recovery fails

• How to collect the log files and other system information when reporting a problem to VoltDB

6.1. Where to Look for Answers
The first place to look when an unrecognized problem occurs with your VoltDB database is the console
where the database process was started. VoltDB echoes key messages and errors to the console. For exam-
ple, if a server becomes unreachable, the other servers in the cluster will report an error indicating which
node has failed. Assuming the cluster is K-safe, the remaining nodes will then re-establish a quorum and
continue, logging this event to the console as well.

However, not all messages are echoed on the console.1 A more complete record of errors, warnings, and
informational messages is written to a log file, log/volt.log, in a subfolder of the working directory
where the VoltDB server process was started. The volt.log file can be extremely helpful for identifying
unexpected but non-fatal events that occurred earlier and may identify the cause of the current issue.

If VoltDB encounters a fatal error and exits, shutting down the database process, it also attempts to write
out a crash file in the current working directory. The crash file name has the prefix "voltdb_crash" followed
by a timestamp identifying when the file is created. Again, this file can be useful in diagnosing exactly
what caused the crash, since it includes the last error message, a brief profile of the server and a dump of
the Java threads running in the server process before it crashed.

To summarize, when looking for information to help analyze system problems, three places to look are:

1. The console where the server process was started.

2. The log file in log/volt.log

3. The crash file named voltdb_crash{timestamp}.txt in the server process's working directory

6.2. Recovering in Safe Mode
After determining what caused the problem, the next step is often to get the database up and running
again as soon as possible. When using snapshots or command logs, this is done using the voltdb recover
command described in Section 3.4, “Restarting the Database”. However, in unusual cases, the resume
itself may fail.

1Note that you can change which messages are echoed to the console and which are logged by modifying the Log4j configuration file. See the
chapter on logging in the Using VoltDB manual for details.

https://voltdb.com/docs/UsingVoltDB/ChapLogging.php
https://voltdb.com/docs/UsingVoltDB/

What to Do When Problems Arise

22

There are several situations where an attempt to recover a database — either from a snapshot or command
logs — may fail. For example, restoring a snapshot where a unique index has been added to a table can
result in a constraint violation that causes the restore, and the database, to fail. Similarly, a command log
may contain a transaction that originally succeeded but fails and raises an exception during playback.

In both of these situations, VoltDB issues a fatal error and stops the database to avoid corrupting the
contents.

Although protecting you from an incomplete recovery is the appropriate default behavior, there may be
cases where you want to recover as much data as possible, with full knowledge that the resulting data set
does not match the original. VoltDB provides two techniques for performing partial recoveries in case
of failure:

• Logging constraint violations during snapshot restore

• Performing command log recovery in safe mode

The following sections describe these techniques.

Warning

It is critically important to recognize that the techniques described in this section do not produce
a complete copy of the original database or resolve the underlying problem that caused the initial
recovery to fail. These techniques should never be attempted without careful consideration and
full knowledge and acceptance of the risks associated with partial data recovery.

6.2.1. Logging Constraint Violations
There are several situations that can cause a snapshot restore to fail because of constraint violations. Rather
than have the operation fail as a whole, you can request that constraint violations be logged to a file instead.
This way you can review the tuples that were excluded and decide whether to ignore or replace their
content manually after the restore completes.

To perform a manual restore that logs constraint violations rather than stopping when they occur, you
use a special JSON form of the @SnapshotRestore system procedure. You specify the path of the log
files in a JSON attribute, duplicatePaths. For example, the following commands perform a restore
of snapshot files in the directory /var/voltdb/snapshots/ with the unique identifier myDB. The
restore operation logs constraint violations to the directory /var/voltdb/logs.

$ sqlcmd
1> exec @SnapshotRestore '{ "path":"/var/voltdb/snapshots/",
 "nonce":"myDB",
 "duplicatesPath":"/var/voltdb/logs/" }';
2> exit

Constraint violations are logged as needed, one file per table, to CSV files with the name {table}-
duplicates-{timestamp}.csv.

6.2.2. Safe Mode Recovery
On rare occasions, recovering a database from command logs may fail. This can happen, for example, if
a stored procedure introduces non-deterministic content. If a recovery fails, the specific error is known.
However, there is no way for VoltDB to know the root cause or how to continue. Therefore, the recovery
fails and the database stops.

What to Do When Problems Arise

23

When this happens, VoltDB logs the last successful transaction before the recovery failed. You can then
ask VoltDB to recover up to but not including the failing transaction by performing a recovery in safe mode.

You request safe mode by adding the --safemode switch to the command line when starting the recovery
operation, like so:

$ voltdb recover --safemode -license ~/license.xml

When VoltDB recovers from command logs in safe mode it enables two distinct behaviors:

• Snapshots are restored, logging any constraint violations

• Command logs are replayed up to the last valid transaction

This means that if you are recovering using an automated snapshot (rather than command logs), you can
recover some data even if there are constraint violations during the snapshot restore. Also, when recovering
from command logs, VoltDB will ignore constraint violations in the command log snapshot and replay all
transactions that succeeded in the previous attempt.

It is important to note that to successfully use safe mode with command logs, you must perform a regular
recovery operation first — and have it fail — so that VoltDB can determine the last valid transaction. Also,
if the snapshot and the command logs contain both constraint violations and failed transactions, you may
need to run recovery in safe mode twice to recover as much data as possible. Once to complete restoration
of the snapshot, then a second time to recover the command logs up to a point before the failed transaction.

6.3. Collecting the Log Files
VoltDB includes a utility that collects all of the pertinent logs for a given server. The log collector retrieves
the necessary system and process files from the server, creates a compressed archive file and, optionally,
uploads it via SFTP to a support site. For customers requesting support from VoltDB, your support contact
will often provide instructions on how and when to use the log collector and where to submit the files.

Note that the database does not need to be running to use the log collector. It can find and collect the log
files based solely on the location of the VoltDB root directory where the database was run.

You can run the log collector from the command line, from within the VoltDB Enterprise Manager, or
programmatically through the REST interface (for databases started through REST or the Enterprise Man-
ager). The following sections describe how to run the log collector using the three different environments.

6.3.1. Collecting Log Files Using the Command Line
To collect the log files from the command line, use the voltdb collect command:

$ voltdb collect --prefix=mylogs /home/db/voltdbroot

When you run the command you must specify the location of the root directory for the database as an
argument to the command. For example, if you are in the same working directory where the database was
originally started, by default the root directory is the subdirectory voltdbroot.

$ voltdb collect --prefix=mylogs $(pwd)/voltdbroot

The archive file that the collect command generates is created in your current working directory.

The collect command has optional arguments that let you control what data is collected, the name of the
resulting archive file, as well as whether to upload the file to an FTP server. In the preceding example
the --prefix flag specifies the prefix for the archive file name. If you are submitting the log files to an

What to Do When Problems Arise

24

FTP server via SFTP, you can use the --upload, --username, and --password flags to identify
the target server and account. For example:

$ voltdb collect --prefix=mylogs \
 --upload=ftp.mycompany.com \
 --username=babbage
 --password=charles /home/db/voltdbroot

Note that the voltdb collect command collects log files for the current system only. To collect logs for all
servers in a cluster, you will need to issue the voltdb collect command locally on each server separately.
See the voltdb collect documentation in the Using VoltDB manual for details.

6.3.2. Collecting Log Files Using the Enterprise Manager

To collect the log files from a database cluster created and managed by the VoltDB
Enterprise Manager, it is easiest to use the Enterprise Manager interface. Click on
the name of the database on the database list to the left of the dashboard then select
the item "Collect logs" from the popup menu.

This menu item brings up a dialog box showing a list of the files and command
output that will be collected. The dialog box also has fields so you can control the
resulting file prefix, include or exclude the heap dump file, and optionally upload
the results via SFTP.

The major difference between using the Enterprise Manager interface and the shell command line is that
the Enterprise Manager creates (and optionally uploads) archives for every server in the cluster at once.
You do not need to collect logs for each server separately.

6.3.3. Collecting Log Files Using the REST Interface
Finally, it is possible to invoke the log collector using the REST interface. Invoking the log collector from
REST has the same effect as invoking it from within the Enterprise Manager — it collects the logs on all
of the servers of the cluster.

The method for collecting logs using the REST interface is /mgmt/databases/{id}/collect.
Attributes of the method let you optionally customize the collection in the same way you can from the

https://voltdb.com/docs/UsingVoltDB/clivoltdb.php
https://voltdb.com/docs/UsingVoltDB/

What to Do When Problems Arise

25

command line or the Enterprise Manager interface. For example, the following REST call collects the logs
from all of the servers associated with the database ID 12345, using the file prefix "MyLogs":

http://voltdbmgr:9000/man/api/1.0/mgmt
/databases/12345/collect?prefix=MyLogs

See the REST reference appendix in the VoltDB Enterprise Manager Guide for more information about
the collect method and the supported attributes.

https://voltdb.com/docs/MgtGuide/AppxRestAPI.php
https://voltdb.com/docs/MgtGuide/

26

Appendix A. Server Configuration Options
There are a number of system, process, and application options that can impact the performance or behavior
of your VoltDB database. You control these options when starting VoltDB. The configuration options fall
into five main categories:

• Server configuration

• Process configuration

• Database configuration

• Path configuration

• Network ports used by the database cluster

This appendix describes each of the configuration options, how to set them, and their impact on the result-
ing VoltDB database and application environment.

A.1. Server Configuration Options
VoltDB provides mechanisms for setting a number of options. However, it also relies on the base operating
system and network infrastructure for many of its core functions. There are operating system configuration
options that you can adjust to to maximize your performance and reliability, including:

• Network configuration

• Time configuration

A.1.1. Network Configuration (DNS)

VoltDB creates a network mesh among the database cluster nodes. To do that, all nodes must be able to
resolve the IP address and hostnames of the other server nodes. Make sure all nodes of the cluster have
valid DNS entries or entries in the local hosts files.

For servers that have two or more network interfaces — and consequently two or more IP addresses — it
is possible to assign different functions to each interface. VoltDB defines two sets of ports:

• External ports, including the client and admin ports. These are the ports used by external applications
to connect to and communicate with the database.

• Internal ports, including all other ports. These are the ports used by the database nodes to communicate
among themselves. These include the internal port, the zookeeper port, and so on. (See Section A.5,
“Network Ports” for a complete listing of ports.)

You can specify which network interface the server expects to use for each set of ports by specifying the
internal and external interface when starting the database. For example:

$ voltdb create catalog.jar -d deployment.xml \
 -H serverA -l license.xml \
 --externalinterface=10.11.169.10 \
 --internalinterface=10.12.171.14

Server Configuration Options

27

Note that the default setting for the internal and external interface can be overridden for a specific port by
including the interface and a colon before the port number when specifying a port on the command line.
See Section A.5, “Network Ports” for details on setting specific ports.

A.1.2. Time Configuration (NTP)

Keeping VoltDB cluster nodes in close synchronization is important for the ongoing performance of your
database. At a minimum, use of NTP to synchronize time across the cluster is recommended. If the time
difference between nodes is too large (greater than three seconds) VoltDB refuses to start. It is also impor-
tant to avoid having nodes adjust time backwards, or VoltDB will pause while it waits for time to "catch
up" to its previous setting.

A.2. Process Configuration Options
In addition to system settings, there are configuration options pertaining to the VoltDB server process
itself that can impact performance. Runtime configuration options are set as command line options when
starting the VoltDB server process.

The key process configuration for VoltDB is the Java maximum heap size. It is also possible to pass other
arguments to the Java Virtual Machine directly.

A.2.1. Maximum Heap Size

The heap size is a parameter associated with the Java runtime environment. Certain portions of the VoltDB
server software use the Java heap. In particular, the part of the server that receives and responds to stored
procedure requests uses the Java heap.

Depending upon how many transactions your application executes a second, you may need additional heap
space. The higher the throughput, the larger the maximum heap needed to avoid running out of memory.

In general, a maximum heap size of two gigabytes (2048) is recommended. For production use, a more
accurate measurement of the needed heap size can be calculated from the size of the catalog (number of
tables), number of sites per host, and what durability and availability features are in use. See the VoltDB
Planning Guide for details.

It is important to remember that the heap size is not directly related to data storage capacity. Increasing the
maximum heap size does not provide additional data storage space. In fact, quite the opposite. Needlessly
increasing the maximum heap size reduces the amount of memory available for storage.

To set the maximum heap size when starting VoltDB, define the environment variable
VOLTDB_HEAPMAX as an integer value (in megabytes) before issuing the voltdb command. For ex-
ample, the following commands start VoltDB with a 3 gigabyte heap size (the default is 2 gigabytes):

$ export VOLTDB_HEAPMAX="3072"
$ voltdb create mycatalog.jar \
 -d deployment.xml -H serverA

A.2.2. Other Java Runtime Options (VOLTDB_OPTS)

VoltDB sets the Java options — such as heap size and classpath — that directly impact VoltDB. There are
a number of other configuration options available in the Java Virtual machine (JVM).

http://docs.voltdb.com/PlanningGuide/
http://docs.voltdb.com/PlanningGuide/

Server Configuration Options

28

VoltDB provides a mechanism for passing arbitrary options directly to the JVM. If the environment vari-
able VOLTDB_OPTS is defined, its value is passed as arguments to the Java command line.

• When starting VoltDB using the voltdb command, the contents of VOLTDB_OPTS are added to the
Java command line on the current server.

• When starting the VoltDB Enterprise Manager, the contents of VOLTDB_OPTS are added to the invo-
cation that the Enterprise Manager uses to start the VoltDB process on all remote servers.

In other words, when starting a cluster manually, you must define VOLTDB_OPTS on each server to have
it take effect for all servers. When using the Enterprise Manager, you only need to define VOLTDB_OPTS
once, before starting the Enterprise Manager, to have these JVM options take effect on all nodes that the
Enterprise Manager starts.

Warning

VoltDB does not validate the correctness of the arguments you specify using VOLTDB_OPTS
or their appropriateness for use with VoltDB. This feature is intended for experienced users only
and should be used with extreme caution.

A.3. Database Configuration Options
Runtime configuration options are set either as part of the deployment file or as command line options
when starting the VoltDB server process. These database configuration options are only summarized here.
See the Using VoltDB manual for a more detailed explanation. The configuration options include:

• Sites per host

• K-Safety

• Network partition detection

• Automated snapshots

• Export

• Command logging

• Heartbeat

• Temp table size

A.3.1. Sites per Host
Sites per host specifies the number of unique VoltDB "sites" that are created on each physical database
server. The section on "Determining How Many Partitions to Use" in the Using VoltDB manual explains
how to choose a value for sites per host.

You set the value of sites per host using the sitesperhost attribute of the <cluster> tag in the
deployment file.

A.3.2. K-Safety
K-safety defines the level of availability or durability that the database can sustain, by replicating individual
partitions to multiple servers. K-safety is described in detail in the "Availability" chapter of the Using
VoltDB manual.

http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapAppRun.php#RunCalculateSites
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

29

You specify the level of K-safety that you want in the deployment file using the kfactor attribute of
the <cluster> tag.

A.3.3. Network Partition Detection

Network partition detection protects a VoltDB cluster in environments where the network is susceptible
to partial or intermittent failure among the server nodes. Partition detection is described in detail in the
"Availability" chapter of the Using VoltDB manual.

Use of network partition detection is strongly recommended for production systems and therefore is en-
abled by default. You can enable or disable network partition detection in the deployment file using the
<partition-detection> tag.

A.3.4. Automated Snapshots

Automated snapshots provide ongoing protection against possible database failure (due to hardware or
software issues) by taking periodic snapshots of the database's contents. Automated snapshots are de-
scribed in detail in the section on "Scheduling Automated Snapshots" in the Using VoltDB manual.

You enable and configure automated snapshots with the <snapshot> tag in the deployment file.

Snapshot activity involves both processing and disk I/O and so may have a noticeable impact on perfor-
mance (in terms of throughput and/or latency) on a very busy database. You can control the priority of
snapshots activity using the <snapshot/> tag within the <systemsettings> element of the deployment file.
The snapshot priority is an integer value between 0 and 10, with 0 being the highest priority and 10 being
the lowest. The closer to 10, the longer snapshots take to complete, but the less they can affect ongoing
database work.

Note that snapshot priority affects all snapshot activity, including automated snapshots, manual snapshots,
and command logging snapshots.

A.3.5. Export

The export function lets you automatically export selected data from your VoltDB database to an another
target database or system using SQL INSERT statements to special export tables at runtime. This feature
is described in detail in the chapter on "Exporting Live Data" in the Using VoltDB manual.

You enable and disable export using the <export> tag in the deployment file.

A.3.6. Command Logging

The command logging function saves a record of each transaction as it is initiated. These logs can then be
"replayed" to recreate the database's last known state in case of intentional or accidental shutdown. This
feature is described in detail in the chapter on "Command Logging and Recovery" in the Using VoltDB
manual.

To enable and disable command logging, use the <commandlog> tag in the deployment file.

A.3.7. Heartbeat

The database servers use a "heartbeat" to verify the presence of other nodes in the cluster. If a heartbeat is
not received within a specified time limit, that server is assumed to be down and the cluster reconfigures

http://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/SaveSnapshotAuto.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapExport.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

30

itself with the remaining nodes (assuming it is running with K-safety). This time limit is called the "heart-
beat timeout" and is specified as a integer number of seconds.

For most situations, the default value for the timeout (10 seconds) is appropriate. However, if your cluster
is operating in an environment that is susceptible to network fluctuations or unpredictable latency, you
may want to increase the heartbeat timeout period.

You can set an alternate heartbeat timeout using the <heartbeat> tag in the deployment file.

A.3.8. Temp Table Size
VoltDB uses temporary tables to store intermediate table data while processing transactions. The default
temp table size is 100 megabytes. This setting is appropriate for most applications. However, extremely
complex queries or many updates to large records could cause the temporary space to exceed the maximum
size, resulting in the transaction failing with an error.

In these unusual cases, you may need to increase the temp table size. You can specify a different size for
the temp tables using the <temptables> tag in the deployment file and specifying a whole number of
megabytes. Note: since the temp tables are allocated as needed, increasing the maximum size can result
in a Java out-of-memory error at runtime if the system is memory-constrained. Modifying the temp table
size should be done with caution.

A.3.9. Query Timeout
In general, SQL queries execute extremely quickly. But it is possible, usually by accident, to construct
a query that takes an unexpectedly long time to execute. This usually happens when the query is overly
complex or accesses extremely large tables without the benefit of an appropriate filter or index.

There is no way to terminate individual queries once they start. However, you can set a limit on the length
of time any read-only query (or batch of queries in the case of the voltExecuteSQL() method in a stored
procedure) is allowed to run. This limit is called the query timeout and is specified in milliseconds. Setting
the timeout value to zero is the equivalent of the default; that is, no timeout.

For example, the following deployment file sets a query timeout value of three seconds:

<systemsettings>
 <query timeout="3000"/>
</systemsettings>

If any query or batch of queries exceeds the query timeout, the query is interrupted and an error returned
to the calling application. Note that the limit is applied to read-only ad hoc queries or queries in read-
only stored procedures only. In a K-Safe cluster, queries on different copies of a partition may execute at
different rates. Consequently the same query may timeout in one copy of the partition but not in another.
To avoid possible non-deterministic changes, VoltDB does not apply the time out limit to any queries or
procedures that may modify the database contents.

A.4. Path Configuration Options
The running database uses a number of disk locations to store information associated with runtime features,
such as export, network partition detection, and snapshots. You can control which paths are used for these
disk-based activities. The path configuration options include:

• VoltDB root

Server Configuration Options

31

• Snapshots path

• Export overflow path

• Command log path

• Command log snapshots path

A.4.1. VoltDB Root

VoltDB defines a root directory for any disk-based activity which is required at runtime. This directory
also serves as a root for all other path definitions that take the default or use a relative path specification.

By default, the VoltDB root is the directory voltdbroot created as a subfolder in the current working
directory for the process that starts the VoltDB server process. (If the subfolder does not exist, VoltDB
creates it on startup.) You can specify an alternate root in the deployment file using the <voltdbroot>
element. However, if you explicitly name the root directory in the deployment file, the directory must exist
or the database server cannot start. See the section on "Configuring Paths for Runtime Features" in the
Using VoltDB manual for details.

When using the VoltDB Enterprise Manager, the VoltDB root directory is defined implicitly by the des-
tination directory. You define the destination directory when you create the database. The VoltDB root
becomes a subfolder of the destination directory, where the subfolder name is the same as the database ID
of the current database. So, for example, if the destination directory is /opt/voltdb and the database
ID is 12345, the resulting VoltDB root directory is /opt/voltdb/12345.

A.4.2. Snapshots Path

The snapshots path specifies where automated and network partition snapshots are stored. The default
snapshots path is the "snapshots" subfolder of the VoltDB root directory. You can specify an alternate
path for snapshots using the <snapshots> child element of the <paths> tag in the deployment file.

A.4.3. Export Overflow Path

The export overflow path specifies where overflow data is stored if the export queue gets too large. The
default export overflow path is the "export_overflow" subfolder of the VoltDB root directory. You
can specify an alternate path using the <exportoverflow> child element of the <paths> tag in the
deployment file.

See the chapter on "Exporting Live Data" in the Using VoltDB manual for more information on export
overflow.

A.4.4. Command Log Path

The command log path specifies where the command logs are stored when command logging is enabled.
The default command log path is the "command_log" subfolder of the VoltDB root directory. However,
for production use, it is strongly recommended that the command logs be written to a dedicated device,
not the same device used for snapshotting or export overflow. You can specify an alternate path using the
<commandlog> child element of the <paths> tag in the deployment file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

http://docs.voltdb.com/UsingVoltDB/ChapAppRun.php#RunConfigPaths
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapExport.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

32

A.4.5. Command Log Snapshots Path
The command log snapshots path specifies where the snapshots created by command logging are stored.
The default path is the "command_log_snapshot" subfolder of the VoltDB root directory. (Note that
command log snapshots are stored separately from automated snapshots.) You can specify an alternate
path using the <commandlogsnapshot> child element of the <paths> tag in the deployment file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

A.5. Network Ports
A VoltDB cluster opens network ports to manage its own operation and to provide services to client appli-
cations. When using the Enterprise Manager, most ports are configurable as part of the database definition.
When using the command line, the network ports are configurable as part of the command that starts the
VoltDB database process or through the deployment file. When specifying a port on the command line,
you can specify just a port number or the network interface and the port number, separated by a colon.

Table A.1, “VoltDB Port Usage” summarizes the ports that VoltDB uses, their default value, and how to
change the default. The following sections describe each port in more detail.

Table A.1. VoltDB Port Usage

Port Default Val-
ue

Where to Set (Community Edition)

Client Port 21212 VoltDB command line

Admin Port 21211 VoltDB command line or deployment file

Web Interface Port (httpd) 8080 VoltDB command line or deployment file

Internal Server Port 3021 VoltDB command line

Log Port 4560 (Enterprise Manager only)

JMX Port 9090 VoltDB command line

Replication Port 5555 VoltDB command line

Zookeeper port 2181 VoltDB command line

A.5.1. Client Port
The client port is the port VoltDB client applications use to communicate with the database cluster nodes.
By default, VoltDB uses port 21212 as the client port. You can change the client port. However, all client
applications must then use the specified port when creating connections to the cluster nodes.

To specify a different client port on the command line, use the --client flag when starting the VoltDB
database. For example, the following command starts the database using port 12345 as the client port:

$ voltdb create mycatalog.jar -l ~/license.xml \
 -d deployment.xml -H serverA \
 --client=12345

When using the Enterprise Manager, use the Edit Configuration dialog box to specify the port to use.

If you change the default client port, all client applications must also connect to the new port. The client
interfaces for Java and C++ accept an additional, optional argument to the createConnection method for

http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

33

this purpose. The following examples demonstrate how to connect to an alternate port using the Java and
C++ client interfaces.

Java

org.voltdb.client.Client voltclient;
voltclient = ClientFactory.createClient();
voltclient.createConnection("myserver",12345);

C++

boost::shared_ptr<voltdb::Client> client = voltdb::Client::create();
client->createConnection("myserver", 12345);

A.5.2. Admin Port

The admin port is similar to the client port, it accepts and processes requests from applications. However,
the admin port has the special feature that it continues to accept requests when the database enters admin
mode.

By default, VoltDB uses port 21211 on the default external network interface as the admin port. You can
change the port assignment in the deployment file using the <admin-mode> tag or on the command line
using the --admin flag. For example, the following deployment file sets the admin port to 2222:

<deployment>
 ...
 <admin-mode port="2222" />
</deployment>

The same effect can be achieved using the --admin flag on the command line:

$ voltdb create mycatalog.jar -l ~/license.xml \
 -d deployment.xml -H serverA \
 --admin=2222

When the admin port is set in both the deployment file and on the command line, the command line setting
supersedes the deployment file.

When using the Enterprise Manager, use the Edit Configuration dialog box to specify a different admin
port.

A.5.3. Web Interface Port (httpd)

The web interface port is the port that VoltDB listens to for web-based connections from the JSON inter-
face. There are two related settings associated with the JSON interface. The first setting is whether the
port is enabled; the second is which port to use, if the interface is enabled.

When starting a VoltDB database manually, the web interface port (and the JSON interface) or disabled
by default. When using the Enterprise Manager, both the web interface port and the JSON interface are
enabled by default. The default httpd port is 8080.

If you plan on using the JSON interface from the community edition, be sure to include the <httpd> tag
in the deployment file.

Server Configuration Options

34

• To enable the httpd port but disable the JSON interface, specify the attribute enabled="false"
in the <jsonapi> tag in the deployment file when starting VoltDB. If you are using the Enterprise
Manager, there is a check box for enabling and disabling the JSON interface in the Edit Configuration
dialog box.

• To change the web interface port, specify the alternate port using the port attribute to the <httpd>
tag in the deployment file. Or, you can use the --http flag on the command line. If you are using the
Enterprise Manager, use the httpd port field in the Edit Configuration dialog.

For example, the following deployment file fragment enables the web interface and the JSON interface,
specifying the alternate port 8083.

<httpd port='8083'>
 <jsonapi enabled='true'/>
</httpd>

If you change the port number, be sure to use the new port number when connecting to the cluster using
the JSON interface. For example, the following URL connects to the port 8083, instead of 8080:

http://athena.mycompany.com:8083/api/1.0/?Procedure=@SystemInformation

For more information about the JSON interface and specifying the appropriate port when connecting to
the VoltDB cluster, see the section on "How the JSON Interface Works" in the Using VoltDB manual.

A.5.4. Internal Server Port
A VoltDB cluster uses ports to communicate among the cluster nodes. This port is internal to VoltDB and
should not be used by other applications.

By default, the internal server port is port 3021 for all nodes in the cluster1. You can specify an alternate
port using the --internal flag when starting the VoltDB process. For example, the following command
starts the VoltDB process using an internal port of 4000:

$ voltdb create mycatalog.jar -l ~/license.xml \
 -d deployment.xml -H serverA \
 --internal=4000

A.5.5. Log Port
When using the Enterprise Manager to configure and run VoltDB, the resulting VoltDB cluster nodes
open a port as an output stream for log4J messages. The Enterprise Manager uses the port to fetch log4J
messages from the cluster nodes and display them in the management console.

By default, port 4560 is assigned as the log port. However, this port is only opened when using the Enter-
prise Manager. You can change the port number using the Edit Database dialog from within the VoltDB
Enterprise Manager.

A.5.6. JMX Port
The VoltDB Enterprise Manager uses JMX to collect statistics from the cluster nodes at runtime. It does
this using JMX.

1In the special circumstance where multiple VoltDB processes are started for one database, all on the same server, the internal server port is
incremented from the initial value for each process.

http://docs.voltdb.com/UsingVoltDB/ProgLangJson.php#JsonIntro
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

35

The default JMX port is 9090. However, the JMX port is only opened when using the VoltDB Enterprise
Edition. You can change the port number used by JMX by adding the Java argument -Dvolt.rmi.agent.port
to the command line. You do that by defining the environment variable VOLTDB_OPTS before starting
the server. For example, the following command assigns the JMX port to port number 2345:

$ export VOLTDB_OPTS="-Dvolt.rmi.agent.port=2345"

There is no JMX port when using the VoltDB Community Edition.

A.5.7. Replication Port
During database replication, the DR agent uses three ports to connect to the master database. By default,
these ports are three sequential ports starting at port 5555; in other words, ports 5555, 5556, and 5557.
You can use three different ports by specifying a different starting port either on the voltdb command line
or in the deployment file.

• On the command line, use the --replication flag to specify a different starting port (and, option-
ally, a different network interface):

$ voltdb create mycatalog.jar -l ~/license.xml \
 -d deployment.xml -H serverA \
 --replication=6666

• In the deployment file, specify the starting port number using the <replication> tag:

<replication port="6666" />

Adding the replication port to the deployment file is useful when setting the port for all nodes in the cluster.
Using the command line option is useful for changing the default port for only one node in the cluster or
for specifying a specific network interface. If you specify the replication port in both the deployment file
and on the command line, the command line argument takes precedence.

A.5.8. Zookeeper Port
VoltDB uses a version of Apache Zookeeper to communicate among supplementary functions that require
coordination but are not directly tied to database transactions. Zookeeper provides reliable synchroniza-
tion for functions such as command logging without interfering with the database's own internal commu-
nications.

VoltDB uses a network port bound to the local interface (127.0.0.1) to interact with Zookeeper. By default,
2181 is assigned as the Zookeeper port. You can specify a different port number using the --zookeeper
flag when starting the VoltDB process. It is also possible to specify a different network interface, like with
other ports. However, accepting the default for the zookeeper network interface is recommended where
possible. For example:

$ voltdb create mycatalog.jar -l ~/license.xml \
 -d deployment.xml -H serverA \
 --zookeeper=2288

36

Appendix B. Snapshot Utilities
VoltDB provides two utilities for managing snapshot files. These utilities verify that a native snapshot
is complete and usable and convert the snapshot contents to a text representation that can be useful for
uploading or reloading data in case of severe errors.

It is possible, as the result of a design flaw or failed program logic, for a database application to become
unusable. However, the data is still of value. In such emergency cases, it is desirable to extract the data
from the database and possibly reload it. This is the function that save and restore performs within VoltDB.

But there may be cases when you want to use the data created by a VoltDB snapshot elsewhere. The goal
of the utilities is to assist in that process. The snapshot utilities are:

• SnapshotConverter converts a snapshot (or part of a snapshot) into text files, creating one file for each
table in the snapshot.

• SnapshotVerifier verifies that a VoltDB snapshot is complete and usable.

Unlike system procedures, that must be run within the context of an existing database connection, the
snapshot utilities can be run from the command line without a running database present. However, the
utilities are still dependent on the Java classes and library for VoltDB. So you must be sure to define your
Java classpath and library path appropriately to invoke the classes.

To run either SnapshotVerifier or SnapshotConverter, use the Java command to invoke the class, specifying
the appropriate classpath and library path based on where your VoltDB software is installed. For example,
if VoltDB is installed in /opt/voltdb, the command to invoke SnapshotVerifier is as follows:

$ java -classpath "/opt/voltdb/voltdb/*:/opt/voltdb/lib/*" \
 -Djava.library.path=/opt/voltdb/voltdb \
 org.voltdb.utils.SnapshotVerifier

You may find it easier to add an alias to your shell script startup file to abbreviate these commands:

$ alias snapshotverify="java \
 -cp \"/opt/voltdb/voltdb/*:/opt/voltdb/lib/*\" \
 -Djava.library.path=/opt/voltdb/voltdb \
 org.voltdb.utils.SnapshotVerifier "
$ alias snapshotconvert="java \
 -cp \"/opt/voltdb/voltdb/*:/opt/voltdb/lib/*\" \
 -Djava.library.path=/opt/voltdb/voltdb \
 org.voltdb.utils.SnapshotConverter "

The following sections describing each command assume these aliases have been defined.

Each command accepts a different set of arguments. Use the --help argument to display a list the al-
lowable arguments and qualifiers. For example:

$ snapshotverify --help

Snapshot Utilities

37

snapshotconvert
snapshotconvert — Converts the tables in a VoltDB snapshot into text files.

Syntax

snapshotconvert {snapshot-id} --type {csv|tsv} \
--table {table} [...] [--dir {directory}]... \
[--outdir {directory}]

snapshotconvert --help

Description
SnapshotConverter converts one or more tables in a valid snapshot into either comma-separated (csv) or
tab-separated (tsv) text files, creating one file per table.

Where:

{snapshot-id} is the unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) You must specify a snapshot ID.

{csv|tsv} is either "csv" or "tsv" and specifies whether the output file is comma-separated or
tab-separated. This argument is also used as the filetype of the output files.

{table} is the name of the database table that you want to export to text file. You can spec-
ify the --table argument multiple times to convert multiple tables with a single
command.

{directory} is the directory to search for the snapshot (--dir) or where to create the resulting
output files (--outdir). You can specify the --dir argument multiple times to
search multiple directories for the snapshot files. Both --dir and --outdir are
optional; they default to the current directory path.

Example
The following command exports two tables from a snapshot of the flight reservation example used in the
Using VoltDB manual. The utility searches for the snapshot files in the current directory (the default) and
creates one file per table in the user's home directory:

$ snapshotconvert flightsnap --table CUSTOMER --table RESERVATION \
 --type csv -- outdir ~/

http://docs.voltdb.com/UsingVoltDB/

Snapshot Utilities

38

snapshotverify
snapshotverify — Verifies that the contents of one or more snapshot files are complete and usable.

Syntax

snapshotverify [snapshot-id] [--dir {directory}] ...

snapshotverify --help

Description
SnapshotVerifier verifies one or more snapshots in the specified directories.

Where:

[snapshot-id] is the unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) If you specify a snapshot ID, only
snapshots matching that ID are verified. If you do not specify an ID, all snapshots
found will be verified.

{directory} is the directory to search for the snapshot. You can specify the --dir argument
multiple times to search multiple directories for snapshot files. If you do not specify
a directory, the default is to search the current directory.

Examples
The following command verifies all of the snapshots in the current directory:

$ snapshotverify

This example verifies a snapshot with the unique identifier "flight" in either the directory /etc/volt-
db/save or ~/mysaves:

$ snapshotverify flight --dir /etc/voltdb/save/ --dir ~/mysaves

