
Performance Guide

Abstract

This book explains how to optimize the performance of applications using VoltDB.

V4.4.1

Performance Guide
V4.4.1
Copyright © 2008-2014 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition, which is distributed
by VoltDB, Inc. under a commercial license. Your rights to access and use VoltDB features described herein are defined by the license you received
when you acquired the software.

This document was generated on October 09, 2014.

http://www.gnu.org/licenses/

iii

Table of Contents
Preface .. vi

1. Organization of this Manual ... vi
2. Other Resources .. vi

1. Introduction ... 1
1.1. What Affects Performance? .. 1
1.2. How to Use This Book .. 1

2. Hello, World! Revisited ... 2
2.1. Optimizing your Application for VoltDB .. 2
2.2. Applying Hello World to a Practical Problem .. 2
2.3. Partitioned vs. Replicated Tables ... 3

2.3.1. Defining the Partitioning Column .. 3
2.3.2. Creating the Stored Procedures ... 4

2.4. Using Asynchronous Stored Procedure Calls ... 6
2.4.1. Understanding Asynchronous Programming .. 6
2.4.2. The Callback Procedure .. 7
2.4.3. Making an Asynchronous Procedure Call ... 8

2.5. Connecting to all Servers ... 8
2.6. Putting it All Together ... 10
2.7. Next Steps ... 11

3. Understanding VoltDB Execution Plans .. 12
3.1. How VoltDB Selects Execution Plans for Individual SQL Statements 12
3.2. Understanding VoltDB Execution Plans .. 12
3.3. Reading the Execution Plan and Optimizing Your SQL Statements 13

3.3.1. Evaluating the Use of Indexes .. 14
3.3.2. Evaluating the Table Order for Joins .. 16

4. Creating Flexible Schemas With JSON ... 19
4.1. Using JSON Data Structures as VoltDB Content .. 19
4.2. Querying JSON Data in VoltDB .. 20
4.3. Indexing JSON Fields .. 22
4.4. Summary: Considerations When Using JSON in VoltDB ... 22

5. Understanding VoltDB Memory Usage ... 23
5.1. How VoltDB Uses Memory .. 23
5.2. Actions that Impact Memory Usage ... 24
5.3. How VoltDB Manages Memory .. 26
5.4. How Memory is Allocated and Deallocated ... 27
5.5. Controlling How Memory is Allocated ... 27
5.6. Understanding Memory Usage for Specific Applications .. 28

6. Managing Time .. 30
6.1. The Importance of Time .. 30
6.2. Using NTP to Manage Time ... 30

6.2.1. Basic Configuration .. 30
6.2.2. Troubleshooting Issues with Time ... 31
6.2.3. Correcting Common Problems with Time ... 31
6.2.4. Example NTP Configuration .. 32

6.3. Configuring NTP in a Hosted, Virtual, or Cloud Environment 33
6.3.1. Considerations for Hosted Environments .. 34
6.3.2. Considerations for Virtual and Cloud Environments .. 34

iv

List of Figures
2.1. Synchronous Procedure Calls ... 6
2.2. Asynchronous Procedure Calls .. 7
5.1. The Three Types of Memory in VoltDB ... 24
5.2. Details of Memory Usage During and After an SQL Statement .. 25
5.3. Controlling the Java Heap Size ... 28

v

List of Examples
6.1. Custom NTP Configuration File .. 33

vi

Preface
This book provides details on using VoltDB to optimize the performance of your database application.
Other books — specifically the VoltDB Tutorial and Using VoltDB — describe the basic features of Volt-
DB and how to use them. However, creating an optimized application requires using those features in the
right combination and in the appropriate context. What features you use and how depends on your specific
application needs. This manual provides advice on those decisions.

1. Organization of this Manual
This book is divided into six chapters:

• Chapter 1, Introduction

• Chapter 2, Hello, World! Revisited

• Chapter 3, Understanding VoltDB Execution Plans

• Chapter 4, Creating Flexible Schemas With JSON

• Chapter 5, Understanding VoltDB Memory Usage

• Chapter 6, Managing Time

2. Other Resources
This book provides recommendations for optimizing VoltDB applications. It assumes you are already
familiar with VoltDB and its features. If you are new to VoltDB, we suggest you read the following books
first:

• VoltDB Tutorial provides a quick introduction to the product and is recommended for new users.

• VoltDB Planning Guide provides guidance for evaluating and sizing VoltDB implementations.

• Using VoltDB provides a complete reference to the features and functions of the VoltDB product.

• VoltDB Administrator's Guide provides information for system operators on setting up and managing
VoltDB databases and the clusters that host them.

These books and more resources are available on the web from http://www.voltdb.com/.

http://voltdb.com/docs/tutorial/
http://voltdb.com/docs/UsingVoltDB/
http://voltdb.com/docs/tutorial/
http://voltdb.com/docs/PlanningGuide/
http://voltdb.com/docs/UsingVoltDB/
http://voltdb.com/docs/AdminGuide/
http://www.voltdb.com/

1

Chapter 1. Introduction
VoltDB is a best-in-class database designed specifically for high volume transactional applications. Other
books describe the individual features and functions of VoltDB. However, getting the most out of any
technology is not just a matter of features; it is using the features effectively, in the right combination,
and in the right context.

The goal of this book is to explain how to achieve maximum performance using VoltDB. Performance is
affected by many different factors, including:

• The design of your database and its stored procedures

• The client applications

• The configuration of the servers that run the database

• The network that connects the servers

Understanding the impact of each factor and the relationship between them can help you both design better
solutions and detect and correct problems in a running system. However, first you must understand the
product itself. If you are new to VoltDB, it is strongly recommended that you read VoltDB Tutorial and
Using VoltDB before reading this book.

1.1. What Affects Performance?
There is no single factor that drives performance or even a single definition for what constitutes "good"
performance. VoltDB is designed to provide exceptional throughput and much of this book is dedicated
to an explanation of how you can maximize throughput in your application design and hardware config-
uration.

However, another aspect of performance that is equally important to database applications is durability:
resilience against — and ability to recover from — hardware failures and other error conditions. VoltDB
has features that enhance database durability. However, these features have their own requirements, par-
ticularly on system sizing and configuration.

All applications are different. There is no single combination of application design, hardware configura-
tion, or database features that can satisfy them all. Your specific requirements drive the trade offs that
need to be made concerning how you configure the database system as a whole. The goal of this book is
to provide you with the facts you need to make an informed decision about those trade offs.

1.2. How to Use This Book
This book is divided into six chapters:

• The beginning of the book (chapters 2 and 3) explains how to design your database schema, stored
procedures, and client applications for maximum performance.

• Chapter 4 explains how to accommodate flexibility in the schema design through the use of JSON
columns and indexes.

• Chapter 5 explains in detail how memory is used by the VoltDB server process.

• Chapter 6 provides guidelines for configuring hardware and operating systems for running a VoltDB
cluster.

http://voltdb.com/docs/tutorial/
http://voltdb.com/docs/UsingVoltDB/

2

Chapter 2. Hello, World! Revisited
The VoltDB software kit includes a Hello World tutorial in the directory /doc/tutorials/hel-
loworld that teaches you how to create a VoltDB database, including stored procedures and a client
application. However, storing five records and doing a single SELECT is not a terribly interesting database
application.

VoltDB is designed to process hundreds of thousands of transactions a second, providing unparalleled
throughput. Hello World does little to demonstrate that. But perhaps we can change it a bit to better em-
ulate real world situations and, in the process, learn how to write applications that maximize the power
of VoltDB.

2.1. Optimizing your Application for VoltDB
VoltDB can be used generically like any other database to insert, select, and update records. But VoltDB
also specializes in:

• Scalability

• Throughput performance

• Durability

Durability is built into the VoltDB database server software through several different functions, including
snapshots, K-Safety, and command logging, features that are described in more detail in the Using VoltDB
manual. Scalability and throughput are related to server configuration (e.g. number of servers, memory
capacity, etc.). However, there are several things that can be done in the design of the database and the
client application to maximize the throughput on any cluster. In particular, this update to the Hello World
tutorial focuses on designing your application to take advantage of:

• Partitioned and replicated tables

• Asynchronous stored procedure calls

• Client connections to all nodes in the database cluster

2.2. Applying Hello World to a Practical Problem
The problem with Hello World is that it doesn't match any real problem, and certainly not one that VoltDB
is designed to solve. However, it is not too hard to think of a practical problem where saying hello could
be useful.

Let's assume we run a system (a website, for example) where users register and log in to use services. We
want to acknowledge when a user logs in by saying hello. Let's further assume that our system is global
in nature. It would be nice if we could say hello in the user's native language.

To support our new user sign in process, we need to store the different ways of saying hello in each
language and we need to record the native language of the user. Then, when they sign in, we can retrieve
their name and the appropriate word for hello.

This means we need two tables, one for the word "hello" in different languages and one for the users. We
can reuse the HELLOWORLD table from our original application for the first table. But we need to add a

http://voltdb.com/docs/UsingVoltDB/

Hello, World! Revisited

3

table for user data, including a unique identifier, the user's name, and their language. Often, the best and
easiest unique identifier for an online account is the user's email address. So that is what we will use. Our
schema now looks like this:

CREATE TABLE HELLOWORLD (
 HELLO VARCHAR(15),
 WORLD VARCHAR(15),
 DIALECT VARCHAR(15) NOT NULL,
 PRIMARY KEY (DIALECT)
);

CREATE TABLE USERACCOUNT {
 EMAIL VARCHAR(128) UNIQUE NOT NULL,
 FIRSTNAME VARCHAR(15),
 LASTNAME VARCHAR(15),
 LASTLOGIN TIMESTAMP,
 DIALECT VARCHAR(15) NOT NULL,
 PRIMARY KEY (EMAIL)
};

Oh, by the way, now that you have learned how to write a basic VoltDB application, you don't need to
type in the sample code yourself anymore. You can concentrate on understanding the nuances that make
VoltDB applications exceptional. The complete sources for the updated Hello World example are available
once you install the VoltDB software in the doc/tutorials/helloworldrevisited subfolder.

2.3. Partitioned vs. Replicated Tables
In the original Hello World example, we partitioned the HELLOWORLD table on dialect to demon-
strate partitioning, which is a key concept for VoltDB. However, there are only so many languages in
the world, and the words for "hello" and "world" are not likely to change frequently. In other words, the
HELLOWORLD table is both small and primarily read-only.

Not all tables need to be partitioned. If a table is small and updated infrequently, it can be replicated.
Copies of a replicated table are stored in every partition. This means that the tables can only be updated
with a multi-partition procedure (which is why you shouldn't replicate write-intensive tables). However,
replicated tables can be read from any single-partitioned procedure since there is a copy in every partition.

HELLOWORLD is an ideal candidate for replication, so we will replicate it in this iteration of the Hello
World application.

USERACCOUNT, on the other hand, is write-intensive. The table is updated every time a user signs in
and the record count increases as new users register with the system. Therefore, it is important that we
partition this table.

2.3.1. Defining the Partitioning Column
The partitioning column needs to support the key access methods for the table. In the case of registered
users, the table is accessed via the user's unique ID, their email address, when the user signs in. So we will
define the EMAIL column as the partitioning column for the table.

The choice of partitioning column is defined in the database schema. If a table is not listed as being parti-
tioned, it becomes a replicated table by default. So for the updated Hello World example, you can remove
the PARTITION TABLE statement for the HELLOWORLD table and add one for USERACCOUNT.
The updated schema contains the following PARTITION TABLE statement:

Hello, World! Revisited

4

PARTITION TABLE USERACCOUNT ON COLUMN EMAIL;

2.3.2. Creating the Stored Procedures

For the sake of demonstration, we only need three stored procedures for our rewrite of Hello World:

• Insert Language — Loads the HELLOWORLD table, just as in the original Hello World tutorial.

• Register User — Creates a new USERACCOUNT record.

• Sign In — Performs the bulk of the work, looking up the user, recording their sign in, and looking up
the correct word for saying hello.

2.3.2.1. Loading the Replicated Table

To load the HELLOWORLD table, we can reuse the Insert stored procedure from our original Hello World
example. The only change we need to make is, because HELLOWORLD is now a replicated table, remove
the PARTITION PROCEDURE statement for the Insert procedure from the schema DDL.

2.3.2.2. Registering New Users

To add a new user to the system, the RegisterUser stored procedure needs to add the user's name, language,
and their email address as the unique identifier for the USERACCOUNT table.

Creating a new record can be done with a single INSERT statement. In this way, the RegisterUser proce-
dure is very similar to the Insert procedure for the HELLOWORLD table. The RegisterUser procedure
looks like this:

import org.voltdb.*;

public class RegisterUser extends VoltProcedure {

 public final SQLStmt insertuser = new SQLStmt(
 "INSERT INTO USERACCOUNT VALUES (?,?,?,?,?);"
);

 public VoltTable[] run(String email, String firstname,
 String lastname, String language)
 throws VoltAbortException {

 // Insert a new record
 voltQueueSQL(insertuser, email, firstname,
 lastname, null, language);
 return voltExecuteSQL();
 }
}

The difference is that RegisterUser can and should be single-partitioned so it does not unnecessarily tie up
multiple partitions. Since the table is partitioned on the EMAIL column, the CREATE and PARTITION
PROCEDURE statements in the schema should look this:

CREATE PROCEDURE FROM CLASS RegisterUser;
PARTITION PROCEDURE RegisterUser ON TABLE Useraccount COLUMN Email;

Hello, World! Revisited

5

2.3.2.3. Signing In

Finally, we need a procedure to sign in the user and retrieve the word for "hello" in their native language.
The key goal for this procedure, since it will be invoked more frequently than any other, is to be performant.
To ensure the highest throughput, the procedure needs to be single-partitioned.

The user provides their email address as the unique ID when they log in, so we can make the procedure
single-partitioned, specifying the email address as the partitioning value. Within the procedure itself we
perform two actions:

• Join the USERACCOUNT and HELLOWORLD tables based on the Dialect column to retrieve both
the user's name and the appropriate word for "hello"

• Update the user's record with the latest login timestamp.

We could write custom code to check the return values from the join of the two tables to ensure that an
appropriate user record was found. However, VoltDB provides predefined expectations for many common
query conditions. We can take advantage of one of these expectations, EXPECTS_ONE_ROW, to verify
that we get the results we want. If the first query, getuser, does not return one row (for example, if no user
record is found), VoltDB aborts the procedure and notifies the calling program that a rollback has occurred.

Expectations provide a way to simplify and standardize error handling in your stored procedures. See the
chapter on simplifying application coding in the Using VoltDB manual for more information.

The resulting SignIn procedure is as follows:

import org.voltdb.*;

public class SignIn extends VoltProcedure {

 public final SQLStmt getuser = new SQLStmt(
 "SELECT H.HELLO, U.FIRSTNAME " +
 "FROM USERACCOUNT AS U, HELLOWORLD AS H " +
 "WHERE U.EMAIL = ? AND U.DIALECT = H.DIALECT;"
);
 public final SQLStmt updatesignin = new SQLStmt(
 "UPDATE USERACCOUNT SET lastlogin=? " +
 "WHERE EMAIL = ?;"
);

 public VoltTable[] run(String id, long signintime)
 throws VoltAbortException {
 voltQueueSQL(getuser, EXPECT_ONE_ROW, id);
 voltQueueSQL(updatesignin, signintime, id);
 return voltExecuteSQL();
 }
}

We also want to declare the procedure and define how it is partitioned in the schema DDL. To do that, we
add the following statements to our schema file:

CREATE PROCEDURE FROM CLASS SignIn;
PARTITION PROCEDURE SignIn ON TABLE Useraccount COLUMN Email;

http://voltdb.com/docs/UsingVoltDB/ChapSimplify.php
http://voltdb.com/docs/UsingVoltDB/

Hello, World! Revisited

6

2.4. Using Asynchronous Stored Procedure Calls
Now we are ready to write the client application. There are two key aspects to taking full advantage of
VoltDB in your client applications. One is make connections to all nodes on the cluster, which we will
discuss shortly. The other is to use asynchronous stored procedure calls.

You can call VoltDB stored procedures either synchronously or asynchronously. When you call a stored
procedure synchronously, your client application waits for the call to be processed before continuing. If
you call a procedure asynchronously, your application continues processing once the call has been initiated.
Once the procedure is complete, your application is notified through a callback procedure.

2.4.1. Understanding Asynchronous Programming

Synchronous calls are easy to understand because all processing is linear; your application waits for the
query results. However, after VoltDB processes a transaction — between when VoltDB sends back the
results, your application handles the results, initiates a new procedure call, and the call reaches the VoltDB
server — the VoltDB database has no work to do (assuming there is only one client application). In this
situation whether the stored procedures are single- or multi-partitioned doesn't matter, since you are only
ever asking the cluster to process one procedure at a time.

As shown in Figure 2.1, “Synchronous Procedure Calls”, more time can be spent in the round trip between
transactions (shown in yellow) than in processing the stored procedures themselves.

Figure 2.1. Synchronous Procedure Calls

What you would like to do is queue up as much work (i.e. transactions) as possible so the database always
has work to do as soon as each transaction is complete. This is what asynchronous stored procedure calls do.

As soon as an asynchronous call is initiated, your application continues processing, including making
additional asynchronous calls. These calls are queued up on the servers and processed in the order they
are received. Once a stored procedure is processed, the results are returned to the calling application and
the next queued transaction started. As Figure 2.2, “Asynchronous Procedure Calls” shows, the database
does not need to wait for the next procedure request, it simply takes the next entry off the queue as soon
as the current procedure is complete.

Hello, World! Revisited

7

Figure 2.2. Asynchronous Procedure Calls

2.4.2. The Callback Procedure
For asynchronous procedures calls, you must provide a callback procedure that is invoked when the re-
quested transaction is complete. Your callback procedure notifies the client application that the call is
complete and performs the same logic your client application normally performs following a procedure
call: interpreting the results of the procedure (if any) and making appropriate changes to client application
variables.

For our new Hello World example, when the SignIn procedure completes, we want to display the return
values in a welcome message to the user. So our callback procedure might look like this:

 static class SignInCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 // Make sure the procedure succeeded.
 if (response.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(response.getStatusString());
 return;
 }

 VoltTable results[] = response.getResults();
 VoltTable recordset = results[0];

 System.out.printf("%s, %s!\n",
 recordset.fetchRow(0).getString("Hello"),
 recordset.fetchRow(0).getString("Firstname"));

 }
 }

The following notes describe the individual components of the callback procedure.

You define the callback procedure as a class that implements (and overrides) the VoltDB Procedure-
Callback class.
Whereas a synchronous procedure call returns the ClientResponse as a return value, an asynchronous
call returns the same ClientResponse object as a parameter to the callback procedure.
In the body of the callback, first we check to make sure the procedure completed successfully. (If
the procedure fails for any reason, for example if a SQL query generates a constraint violation, the
ClientResponse contains information about the failure.) In this case we are only looking for success.

Hello, World! Revisited

8

Once we know the procedure succeeded, we perform the same functions we would for a synchronous
call. In this case, we retrieve the appropriate words from the response and use them to construct and
display a greeting to the user.

Since we also want to call the RegisterUser procedure asynchronously, we need to create a callback for that
procedure as well. In the case of registering the user, we do not need to provide feedback, so the callback
procedure is simplified. All that is needed in the body of the callback is to detect and report any errors that
might occur. The RegisterCallback looks like this:

 static class RegisterCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 // Make sure the procedure succeeded. If not
 // (for example, account already exists),
 // report the error.
 if (response.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(response.getStatusString());
 }

 }
 }

2.4.3. Making an Asynchronous Procedure Call
Once you define a callback, you are ready to initiate the procedure call. You make asynchronous procedure
calls in the same way you make synchronous procedure calls. The only differences are that you specify
the callback procedure as the first argument to the callProcedure method and you do not need to make an
assignment to a client response, since the response is sent as a parameter to the callback procedure.

The following example illustrates both a synchronous and an asynchronous call to the SignIn procedure
we defined earlier:

 // Synchronous procedure call
ClientResponse response = myApp.callProcedure("SignIn",
 email, currenttime);

 // Asynchronous procedure call
myApp.callProcedure(new SignInCallback(), "SignIn",
 email, currenttime);

If you do not need to verify the results of a transaction, you do not even need to create a unique callback
procedure. Just as you can make a synchronous procedure call and not assign the results to a local object if
they are not needed, you can make an asynchronous procedure call using the default callback procedure,
which does no special processing. For example, the following code calls the Insert procedure to add a
HELLOWORLD record using the default callback:

myApp.callProcedure(new ProcedureCallback(), "Insert",
 "English", "Hello", "World");

2.5. Connecting to all Servers
The final step, once you have optimized the partitioning and the procedure invocations, is to maximize the
bandwidth between your client application and the cluster. You can create connections to any of the servers
in the cluster and that server will coordinate the processing of your transactions with the other nodes.

Hello, World! Revisited

9

Each node in the cluster has its own queue of pending transactions. That node is responsible for:

• Receiving the transaction request from the client and returning the results upon completion

• Routing the transaction to the appropriate partition, or initiator, based on the transaction's characteristics.

There is one initiator for each unique partition, and a separate initiator for multi-partition transactions
within the cluster. Once the initiator receives the transaction, it is responsible for:

• Scheduling the transaction with the other nodes in the cluster

• Distributing the work items for the transaction to the appropriate nodes and partitions and collecting
responses when it is time to execute the transaction

Any node in the cluster can receive transaction requests. However, for maximum performance it is best if
all nodes do their share. Initiators are automatically distributed around the cluster. But if only one node is
interacting with the client application, managing the queue can become a bottleneck and leave the other
nodes in the cluster idle while they wait for work items.

This is why the recommendation is for client applications to create connections to as many nodes in the
cluster as possible. When there are multiple connections, the Java client interface will direct each transac-
tion to the most appropriate server, avoiding extra "hops" within the cluster as requests are redirected to
the corresponding initiator. For other clients that support multiple connections, requests use a round-robin
approach to distribute the procedure calls.

By default, the VoltDB sample applications assume a single server (localhost) and only create a single
connection. This makes the examples easy to read and easy to run for anyone who downloads the kit.
However, in real world examples your client application should create connections to all of the nodes in
the cluster to evenly distribute the work load and avoid network bottlenecks.

The update to the Hello World example demonstrates one method for doing this. Since it is difficult to know
in advance what nodes are used in the cluster, the revised application uses an argument on the command
line to specify what nodes to connect to. (Avoiding hard-coded server names is also a good practice so
you do not have to recode your application if you add or replace servers in the future.)

The first argument on the command line is assumed to be a comma-separated list of server names. This
list is converted to an array, which is used to create connections to each node. If there is no command line
argument, the default server "localhost" is used. The following is the applicable code from the beginning
of the client application. Note that only one client is instantiated but multiple connections are made from
that client object.

Hello, World! Revisited

10

public static void main(String[] args) throws Exception {

 /*
 * Expect a comma-separated list of servers.
 * If not, use localhost.
 */
 String serverlist = "localhost";
 if (args.length > 0) { serverlist = args[0]; }
 String[] servers = serverlist.split(",");

 /*
 * Instantiate a client and connect to all servers
 */
 org.voltdb.client.Client myApp = ClientFactory.createClient();
 for (String server: servers) {
 myApp.createConnection(server);
 }

2.6. Putting it All Together
Now that we have defined the schema, created the stored procedures and the callback routines for asyn-
chronous calls, and created connections to all of the nodes in the cluster, we can put together the new and
improved Hello World application. We start by loading the HELLOWORLD table just as we did in the
previous version. Since this is only done once to initialize the run, we can make them synchronous calls.
Note that we do not need to worry about constraint violations. If the client application is run two or more
times, we can reuse the pre-loaded content.

/*
* Load the database.
*/
try {
 myApp.callProcedure("Insert", language[0], "Hello", "World");
 myApp.callProcedure("Insert", language[1], "Bonjour", "Monde");
 myApp.callProcedure("Insert", language[2], "Hola", "Mundo");
 myApp.callProcedure("Insert", language[3], "Hej", "Verden");
 myApp.callProcedure("Insert", language[4], "Ciao", "Mondo");
} catch (Exception e) {
 // Not to worry. Ignore constraint violations if we
 // load this table more than once.
}

To show off the performance, we then emulate the running system. We need some users. So, again, we
initialize a few user records using the RegisterUser stored procedure. As a demonstration, we use a utility
method for generating pseudo-random email addresses.

Hello, World! Revisited

11

/*
* Start by making sure there are at least 5 accounts
*/
while (maxaccountID < 5) {
 String first = firstname[seed.nextInt(10)];
 String last = lastname[seed.nextInt(10)];
 String dialect = language[seed.nextInt(5)];
 String email = generateEmail(maxaccountID);
 myApp.callProcedure(new RegisterCallback(),"RegisterUser",
 email,first,last,dialect);
 maxaccountID++;
}

Finally, we want to repeatedly call the SignIn stored procedure, while occasionally registering a new user
(say, once every 100 sign ins).

/*
* Emulate a busy system: 100 signins for every 1 new registration.
* Run for 5 minutes.
*/
long countdowntimer = System.currentTimeMillis() + (60 * 1000 * 5);
while (countdowntimer > System.currentTimeMillis()) {

 for (int i=0; i<100; i++) {
 //int id = seed.nextInt(maxaccountID);
 String user = generateEmail(seed.nextInt(maxaccountID));
 myApp.callProcedure(new SignInCallback(), "SignIn",
 user, System.currentTimeMillis());
 }

 String first = firstname[seed.nextInt(10)];
 String last = lastname[seed.nextInt(10)];
 String dialect = language[seed.nextInt(5)];
 String email = generateEmail(maxaccountID);

 myApp.callProcedure(new RegisterCallback(),"RegisterUser",
 email,first,last,dialect);
 maxaccountID++;

}

The completed source code can be found (and run) in the doc/tutorials/helloworldrevisit-
ed/ folder where VoltDB is installed. Give it a try on a single system or on a multi-node cluster.

2.7. Next Steps
Updating the Hello World example demonstrates how to design applications that can maximize the value
of the VoltDB software. However, even with these changes, Hello World is still a very simple application.
Deciding how to partition the database for your specific needs and how to configure a cluster to support the
VoltDB features you want to use requires careful consideration of capabilities and tradeoffs. The following
chapters provide further guidance on this topics.

12

Chapter 3. Understanding VoltDB
Execution Plans

This chapter explains how VoltDB plans for executing SQL statements, the information it generates about
the plans, and how you can use that information to evaluate and optimize your SQL code.

3.1. How VoltDB Selects Execution Plans for Indi-
vidual SQL Statements

When VoltDB compiles an application catalog, it reviews possible execution plans for the SQL statements
in the stored procedures. Based on the schema, the partition columns, and any implicit or explicit indexes
for the tables, VoltDB chooses what it believes is the most efficient plan for executing each statement. The
more complex the SQL statement, the more execution plans VoltDB considers.

As part of the compilation process, VoltDB generates textual execution plans that you can use to understand
what execution order was selected. You can also affect those plans by specifying the order in which tables
are joined as part of your SQL statement declaration.

3.2. Understanding VoltDB Execution Plans
When you compile your schema and stored procedures, VoltDB creates the folder ./debugoutput (in
the current default path) and writes files summarizing the planning process into subfolders. Many of these
files contain more information than necessary to help the end user. But one folder contains a summary
in human readable form.

The folder ./debugoutput/statement-winner-plans/ contains the final plans chosen for exe-
cution. In other words, a description of the plans that VoltDB chose for executing each and every SQL state-
ment in your project. These execution plans describe the order in which tables are scanned and which index-
es, if any, are used to access those tables. The execution plans in ./debugoutput/statement-win-
ner-plans are included in the application catalog in the folder /plans. And once the database is start-
ed, you can also access the execution plans using the @Explain and @ExplainProc system procedures. So
the execution plans are available to anyone with a copy of the resulting catalog.

Let's look at the Hello World tutorial as an example. The Hello World example is very simple; it has two
stored procedures with one SQL statement each. When VoltDB compiles the catalog, it creates one file
in the statement-winner-plans folder for each statement. The files are named according to the
stored procedure name and SQL statement name. So, for Hello World, there are two files:

• Insert-sql.txt

• Select-sql.txt

Note that in both stored procedures, the SQLStmt instance is named sql. If the SQLStmt uses a differ-
ent name, the plan file reflects that difference. (For example, in the Voter application, the SQL state-
ment in the Results stored procedure is named resultStmt. Therefore, the plan file is created as Re-
sults-resultStmt.txt.)

Understanding Volt-
DB Execution Plans

13

3.3. Reading the Execution Plan and Optimizing
Your SQL Statements

Within the execution plan is an ordered representation of the winning plan. The plan can be read bottom up
to understand the order in which the plan is executed. So, for example, looking at the SELECT statement
in the Hello World example, we see that the Select-sql.txt plan file contains the following:

 SQL: SELECT HELLO, WORLD FROM HELLOWORLD WHERE DIALECT = ?;
 COST: 6.0
 PLAN:

 RETURN RESULTS TO STORED PROCEDURE
 INDEX SCAN of "HELLOWORLD" using "SYS_IDX_SYS_PK_10018_10019" (unique-scan covering)

The first two lines list the SQL statement itself and a "cost" for the selected plan. The cost value is an
abstract internal calculation used to determine which of the many possible plans the compiler chooses
as the winner. In general, the more complex the SQL statement, the higher the cost for any given plan.
However, this cost value does not have any bearing on the actual potential performance of the statement
itself. It is simply a relative ordering of the possible plans.

The real content of the execution plan appears in the "Plan" section, starting with line 3.

As mentioned before it is often easiest to read the plans from the bottom up. So in this instance, how the
SQL statement is executed is by:

• Performing an indexed scan of the HELLOWORLD table (line 6)

• Returning the selected row(s) to the stored procedure (line 5)

You will notice that line 6 is indented to indicate it is a child of the preceding statement. In other words,
it must be completed before the results can be returned.

You will also notice that the scan of the HELLOWORLD table specifies the index as
SYS_IDX_SYS_PK_10018_10019. The use of system-generated values is not particularly meaningful,
but is a consequence of the index not being explicitly named in the database schema. If you want to use
the execution plans to evaluate your schema and stored procedures, it is a good idea to explicitly name
the indexes in your DDL. For example, if we modify the Hello World example to explicitly name the
partitioning column:

CREATE TABLE HELLOWORLD (
 HELLO VARCHAR(15),
 WORLD VARCHAR(15),
 DIALECT VARCHAR(15) NOT NULL,
 CONSTRAINT PK_DIALECT PRIMARY KEY (DIALECT)
);

The execution plan incorporates the stated name, becoming more readable:

SQL: SELECT HELLO, WORLD FROM HELLOWORLD WHERE DIALECT = ?;
COST: 6.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE

Understanding Volt-
DB Execution Plans

14

 INDEX SCAN of "HELLOWORLD" using "SYS_IDX_PK_DIALECT_10018" (unique-scan covering)

Of course, planning for a SQL statement accessing one table with only one condition is not very difficult.
The execution plan becomes far more interesting when evaluating more complex statements. For example,
if you look at the execution plans for the Voter example that comes with the VoltDB software, you can
see a more complex execution plan for the GetStateHeatmap stored procedure:

SQL: SELECT contestant_number, state, SUM(num_votes) AS num_votes
 FROM v_votes_by_contestant_number_state GROUP BY contestant_number,
 state ORDER BY 2 ASC, 3 DESC;
COST: 8000000.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 AGGREGATION ops: sum
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 AGGREGATION ops: sum
 SEQUENTIAL SCAN of "V_VOTES_BY_CONTESTANT_NUMBER_STATE"

In this example you see an execution plan for a multi-partition stored procedure. Again, reading from the
bottom up, the order of execution is:

• At each partition, perform a sequential scan of the votes-per-contestant-and-state table.

• Use an aggregate function to sum the votes for each contestant.

• Return the results from each partition to the initiator that is coordinating the multi-partition transaction.

• Sum the results from all partitions.

• Combine and sort the results.

• And finally, return the results to the stored procedure.

3.3.1. Evaluating the Use of Indexes
What makes the execution plans important is that they can help you optimize your database application
by pointing out where the data access can be improved, either by modifying indexes or by changing the
join order of queries. Let's start by looking at indexes.

VoltDB uses information about the partitioning column to determine what partition needs to execute a sin-
gle-partitioned stored procedure. However, it does not automatically create an index for accessing records
in that column. So, for example, in the Hello World example, if we remove the primary key (DIALECT)
on the HELLOWORLD table, the execution plan for the select statement also changes:

SQL: SELECT HELLO, WORLD FROM HELLOWORLD WHERE DIALECT = ?;
COST: 2000000.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 SEQUENTIAL SCAN of "HELLOWORLD"

Note that the first operation has changed to a sequential scan of the HELLOWORLD table, rather than a
indexed scan. Since the Hello World example only has a few records, it does not take very long to look

Understanding Volt-
DB Execution Plans

15

through five or six records looking for the right one. But imagine doing a sequential scan of an employee
table containing tens of thousands of records. It quickly becomes apparent how important having an index
can be when looking for individual records in large tables.

There is an incremental cost associated with inserts or updates to tables containing an index. But the
improvement on read performance often far exceeds any cost associated with writes. For example, consider
the flight application that is used as an example throughout Chapter 3 of the Using VoltDB manual. The
FLIGHT table is a replicated table with an index on the FLIGHT_ID, which helps for transactions that
join the FLIGHT and RESERVATION tables looking for a specific flight.

However, one of the most common transactions associated with the FLIGHT table is customers looking
for flights during a specific time period; not by flight ID. In fact, looking up flights by time period is
estimated to occur at least twice as often as looking for a specific flight.

The execution plan for the LookupFlight stored procedure using the original schema looks like this:

SQL: SELECT * FROM FLIGHT WHERE origin=? AND destination=?
 AND departtime>? AND departtime < ?;
COST: 2000000.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 SEQUENTIAL SCAN of "FLIGHT"

Clearly, looking through a table of 2,000 flights without an index 10,000 times a second will impact
performance. So it makes sense to add another index to improve this transaction. Because the condition
is a range (greater than or less than) rather than checking for an exact value match, it needs a tree rather
than a hash index.

VoltDB creates tree indexes by default. However, you can explicitly specify the type of index by adding
the string "tree" or "hash" (upper or lower case) to the constraint name. For example, we can explicitly
specify that we want a tree index by using "tree" in the index name:

CREATE TABLE Flight (
 FlightID INTEGER UNIQUE NOT NULL,
 DepartTime TIMESTAMP NOT NULL,
 Origin VARCHAR(3) NOT NULL,
 Destination VARCHAR(3) NOT NULL,
 NumberOfSeats INTEGER NOT NULL,
 PRIMARY KEY(FlightID)
);
CREATE INDEX flightTimeTreeIdx ON FLIGHT (departtime);

After adding the tree index, the execution plan changes to use the index:

SQL: SELECT * FROM FLIGHT WHERE origin=? AND destination=?
 AND DEPARTTIME>? AND DEPARTTIME < ?;
COST: 144.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 INDEX SCAN of "FLIGHT" using "FLIGHTTIMETREEIDX" (range-scan covering)

Indexes are not required for every database query. For very small tables or infrequent queries, an index
could be unnecessary overhead. However, in most cases and especially frequent queries over large datasets,
not having an applicable index can severely impact performance.

http://voltdb.com/docs/UsingVoltDB/

Understanding Volt-
DB Execution Plans

16

When tuning your VoltDB database application, one useful step is to review the execution plans to make
sure your application is not performing any unexpected sequential (non-indexed) scans. You can use the
Linux grep command to do this, like so:

$ grep -i "sequential scan" debugoutput/statement-winner-plans/*

3.3.2. Evaluating the Table Order for Joins
The other information that the execution plans provides, in addition to the use of indexes, is the order in
which the tables are joined.

Join order often impacts performance. Normally, when joining two or more tables, you want the database
engine to scan the table that produces the smallest number of matching records first. That way, there are
fewer comparisons to evaluate when considering the other conditions. However, at compile time, VoltDB
does not have any information about the potential sizing of the individual tables and must make its best
guess based solely on the table schema, query, and any indexes that are defined.

For example, assume we have a database that correlates employees to departments. There is a DEPART-
MENT table and an EMPLOYEE table, with a DEPT_ID column that acts as a foreign key. But depart-
ments have managers, who are themselves employees. So there is a MANAGER table that also contains
both a DEPT_ID and an EMP_ID column. The relationship of the tables looks like this:

Most transactions look up employees by their employee ID or their department ID. So indexes are created
for those columns. However, say we want to look up all the employees that report to a specific manager.
Now we need to join the MANAGER table (to get the department ID), the DEPARTMENT table (to get
the department name), and the EMPLOYEE table (to get the employees' names). VoltDB does not know,
in advance when compiling the catalog, that there will be many more employees than departments or
managers. As a result, the winning plan might look like the following:

SQL: SELECT dept.dept_name, dept.dept_id,emp.emp_id, emp.first_name,
 emp.last_name, manager.emp_id FROM MANAGER, DEPARTMENT AS Dept,
 EMPLOYEE AS Emp WHERE manager.emp_id=? AND manager.dept_id=dept.dept_id
 AND manager.dept_id=emp.dept_id ORDER BY emp.last_name, emp.first_name
COST: 8000000.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 NESTLOOP INDEX JOIN

Understanding Volt-
DB Execution Plans

17

 inline (INDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "MANAGER" using "MGRIDX" (unique-scan covering))
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 SEQUENTIAL SCAN of "EMPLOYEE"

Clearly, performing a sequential scan of the employees (since the department ID has not been identified
yet) is not going to provide the best performance. What you really want to do is to join the MANAGER
and DEPARTMENT tables first, to identify the department ID before joining the EMPLOYEE table so
the last join can take advantage of the appropriate index.

For cases where you are joining multiple tables and know what the optimal join order would be, VoltDB lets
you specify the join order as part of the SQL statement definition. Normally, you declare a new SQLstmt
class by specifying the SQL query only. However, you can provide a second argument specifying the join
order as a comma-separated list of table names and aliases. For example, the declaration of the preceding
SQL query, including join order, would look like this:

public final SQLStmt FindEmpByMgr = new SQLStmt(
 "SELECT dept.dept_name, dept.dept_id, emp.emp_id, " +
 "emp.first_name, emp.last_name, manager.emp_id " +
 "FROM MANAGER, DEPARTMENT AS Dept, EMPLOYEE AS Emp " +
 "WHERE manager.emp_id=? AND manager.dept_id=dept.dept_id " +
 "AND manager.dept_id=emp.dept_id " +
 "ORDER BY emp.last_name, emp.first_name",
 "manager,dept,emp");

Note that where the query defines an alias for a table — as the preceding example does for the DEPART-
MENT and EMPLOYEE tables — the join order must use the alias name rather than the original table
name. Also, if a query joins six or more tables, you must specify the join order or VoltDB reports an error
when it compiles the project.

Having specified the join order, the chosen execution plan changes to reflect the new sequence of oper-
ations:

SQL: SELECT dept.dept_name, dept.dept_id,emp.emp_id, emp.first_name,
 emp.last_name, manager.emp_id FROM MANAGER, DEPARTMENT AS Dept,
 EMPLOYEE AS Emp WHERE manager.emp_id=? AND manager.dept_id=dept.dept_id
 AND manager.dept_id=emp.dept_id ORDER BY emp.last_name, emp.first_name
COST: 8000000.0
PLAN:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "EMPLOYEE" using "EMPDEPTIDX" (unique-scan covering))
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
 SEQUENTIAL SCAN of "MANAGER"

The new execution plan has at least three advantages over the default plan:

• It starts with a sequential scan of the MANAGER table, a table with 10-20 times fewer rows than the
EMPLOYEE table.

Understanding Volt-
DB Execution Plans

18

• Because MANAGER and DEPARTMENT are replicated tables, all of the initial table scanning and
filtering can occur locally within each partition, rather than returning the full EMPLOYEE data from
each partition to the initiator to do the later joins and sorting.

• Because the join order retrieves the department ID first, the execution plan can utilize the index on that
column to improve the scanning of EMPLOYEE, the largest table.

19

Chapter 4. Creating Flexible Schemas
With JSON

A major part of any relational database is the schema: the structure of the data as defined by the tables and
columns. It is possible to change the schema when necessary. However, at any given time, each table has
a set number of columns, each with a specific name and datatype.

It is possible to store unstructured data in a relational database as a "blob" using a VARBINARY or
VARCHAR column. However, the database has no way to operate on your data effectively beyond simply
storing and retrieving it.

Sometimes data is not as strictly organized as a relational database schema requires, but does have structure
within it. For example, a table may have a set of properties, each with a different name and matching value.
But not all records use the same set of properties.

JSON (JavaScript Object Notation) is a light-weight data interchange format that lets you describe data
structures on the fly. JSON-encoded strings are composed of a hierarchy of key-value pairs that can be
as simple or as complex as needed. More importantly, the actual structure of the object is determined at
run-time and does not need to be predefined.

VoltDB gives you the ability to mix the efficiency of the relational schema with the flexibility of JSON. By
using JSON-encoded columns with new VoltDB SQL functions and index capabilities, you can work more
naturally with JSON data while maintaining the efficiency and transactional consistency of a relational
database.

4.1. Using JSON Data Structures as VoltDB Con-
tent

Let’s assume that you want to implement a single sign-on (SSO) application using VoltDB. You wish to
store the login session for a set of different online sites under a common username. Each login session
could hold different user state, simple data values or possibly more complex structures. Additionally, future
sessions could hold just about anything. Because of the variability of the data, a good strategy would be
to JSON-encode it. The VoltDB table schema for this application might look like the following:

CREATE TABLE user_session_table (
 username varchar(200) UNIQUE NOT NULL,
 password varchar(100) NOT NULL,
 global_session_id varchar(200) UNIQUE NOT NULL,
 last_accessed TIMESTAMP,
 json_data varchar(2048)
);
PARTITION TABLE user_session_table ON COLUMN username;

Common across all sessions would be the username, password, perhaps a global session ID, and a last
accessed timestamp. Because you wish to support millions of simultaneous logins, it is best to partition
the table based on the username column.

This schema is from the json-sessions sample application that comes with the VoltDB server software.

Ultimately, the sample inserts the JSON-encoded session into the database using a simple standard SQL
statement:

Creating Flexible
Schemas With JSON

20

INSERT INTO user_session_table (username, password,
 global_session_id,
 last_accessed, json_data)
 VALUES (?, ?, ?, ?, ?);

The json-sessions sample models each type of session being tracked as a plain old Java object (POJO). To
simplify encoding these session types into JSON, the sample uses an open source package from Google
called GSON. GSON can convert POJOs to/from JSON, greatly simplifying the JSON processing in the
example.

Note that VoltDB does not, at present time, validate that data inserted into a VARCHAR column is properly
encoded JSON. Validation of encoding occurs during query time, as described in the next section.

4.2. Querying JSON Data in VoltDB
The VoltDB FIELD() column function helps you interact with JSON encoded data. Using the
user_session_table schema above, let's assume the table is populated with rows similar to the following:

SELECT username, json_data FROM user_session_table
 ORDER BY username LIMIT 10

USERNAME JSON_DATA
----------- ---
user-1 {"read_only_user":true,"site":"VoltDB Management","props":
 {"last-login":"1356537244991"}}
user-10 {"role":"reader","site":"VoltDB Blog","props":{"last-login":
 "1356537252380"}}
user-1000 {"role":"reader","site":"VoltDB Blog","props":{"last-login":
 "1356537251017"}}
user-10000 {"read_only_user":false,"site":"VoltDB Management","props":
 {"last-login":"1356537246249"}}
user-10002 {"role":"reader","site":"VoltDB Blog","props":{"last-login":
 "1356537250566"}}
user-10003 {"read_only_user":false,"site":"VoltDB Management","props":
 {"last-login":"1356537252187"}}
user-10004 {"moderator":false,"download_count":0,"site":"VoltDB Forum",
 "props":{"last-login":"1356537244170"}}
user-10005 {"moderator":false,"download_count":0,"site":"VoltDB Forum",
 "props":{"last-login":"1356537250381"}}
user-10006 {"moderator":false,"download_count":0,"site":"VoltDB Forum",
 "props":{"last-login":"1356537245804"}}
user-10009 {"moderator":false,"download_count":0,"site":"VoltDB Forum",
 "props":{"last-login":"1356537249792"}}

By using the FIELD() function, a query can return only those rows where the login session is from the
“VoltDB Forum”. The query and results would look as follows:

SELECT username, json_data FROM user_session_table
 WHERE field(json_data, 'site')='VoltDB Forum'
 ORDER BY username LIMIT 10

USERNAME JSON_DATA
----------- --
user-10004 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":

Creating Flexible
Schemas With JSON

21

 {"last-login":"1356537244170"}}
user-10005 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537250381"}}
user-10006 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537245804"}}
user-10009 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537249792"}}
user-10013 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537250681","client_language":"Java"}}
user-10014 {"moderator":false,"download_count":1,"site":"VoltDB Forum","props":
 {"last-login":"1356537251345","download_version":"v2.7"}}
user-10015 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537250817"}}
user-10016 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537244761"}}
user-10017 {"moderator":false,"download_count":1,"site":"VoltDB Forum","props":
 {"last-login":"1356537253137","download_version":"v3.0"}}
user-10027 {"moderator":false,"download_count":0,"site":"VoltDB Forum","props":
 {"last-login":"1356537248096","client_language":"Java"}}

Note that the FIELD() function assumes that the VARChAR column value is valid JSON. If the value is
not valid JSON, the query fails with an appropriate error message.

Say you want to refine the result even further and find those Forum sessions that had downloaded any 2.x
version content. You can use nested FIELD() function invocations to drill deeper into the JSON structure.
For example, the following query fetches the properties for the VoltDB Forum session and then further
extracts the download_version field, ultimately pattern matching on the value using the SQL LIKE clause:

SELECT username, json_data FROM user_session_table
 WHERE field(field(json_data, 'props'), 'download_version')
 LIKE 'v2%' ORDER BY username LIMIT 10

USERNAME JSON_DATA
----------- ---
user-10014 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537251345","download_version":"v2.7"}}
user-10030 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537250413","download_version":"v2.7"}}
user-10052 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537250274","download_version":"v2.7"}}
user-10087 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537247453","download_version":"v2.7"}}
user-10103 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537247822","download_version":"v2.7",
 "client_language":"Java"}}
user-10170 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537250308","download_version":"v2.7"}}
user-1018 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537252219","download_version":"v2.7"}}
user-10223 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537248629","download_version":"v2.7"}}
user-10226 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537249328","download_version":"v2.7",
 "client_language":"Java"}}

Creating Flexible
Schemas With JSON

22

user-10227 {"moderator":false,"download_count":1,"site":"VoltDB Forum",
 "props":{"last-login":"1356537252425","download_version":"v2.7"}}

4.3. Indexing JSON Fields
The queries executed in the previous section all require a full table scan to compute the results. With large
data sets these queries could be costly in terms of compute cycles and time. To speed up query execution
for these types of queries, should they be executed frequently, you can define an index on the commonly
accessed fields. Again the FIELD() function comes into play. VoltDB supports defining function-based
indexes.

To significantly improve the query execution time of the queries in the prior section, the following two
indexes should be created:

CREATE INDEX session_site_moderator
 ON user_session_table (field(json_data, 'site'),
 field(json_data, 'moderator'), username);

CREATE INDEX session_props
 ON user_session_table
 (field(field(json_data, 'props'), 'download_version'),
 field(field(json_data, 'props'), 'client_language'),
 username);

These are fully functional SQL indexes. Whenever you create or update a record in the user_session_table
table, VoltDB runs the FIELD() function to extract the specified field from the JSON value and stores the
result inside the index. When you query by that same field in the future, VoltDB will use the index and
avoid the table scan. Additionally, using the index usually avoids JSON string processing.

4.4. Summary: Considerations When Using JSON
in VoltDB

One of the major benefits of encoding data as a JSON field is that you don not have to predefine what
structure or shape that data will have. Further, the shape of the data can vary from one row to the next.

In the json-sessions example, the schema for the JSON column is defined by the Java objects themselves,
on the fly, rather than having to define the structure using SQL ahead of time. If a new Java object, such
as a new session type, is needed, you simply create the Java object, serialize it to JSON, and store it in
VoltDB. This avoids the need to propagate a new catalog with DDL changes to the database.

On the flip-side, using a variable schema in the JSON column means that your application must be intel-
ligent enough to understand the various structures that appear in that JSON column. Further, you must
be sensitive to when indexes are needed, should query patterns change in your application along with the
shape of the data. This may, for example, require you to add (or modify) indexes based on the existence
of new fields that are now frequently queried.

Another point of note is the size limit for JSON values. In VoltDB, VARCHAR columns, in which JSON
values are stored, are limited to 1MB, exactly 1024^2 bytes (1048576 bytes). In this way, JSON support lets
you augment the existing relational model within VoltDB. It is not intended or appropriate as a replacement
for pure blob-oriented document stores.

23

Chapter 5. Understanding VoltDB
Memory Usage

VoltDB is an in-memory database. Storing data in memory has the advantage of eliminating the perfor-
mance penalty of disk accesses (among other things). However, with the complex interaction of VoltDB
memory usage and how operating systems allocate and deallocate memory, it can be tricky understanding
exactly how much memory is being used at any given time. For example, deleting rows of data can result
in a temporary increase in memory usage, which seems counterintuitive at first.

This chapter explains how VoltDB uses memory, the impact of system memory allocation and deallocation
functions on your database's memory utilization, and variables available to you to help control memory
usage.

5.1. How VoltDB Uses Memory
The memory that VoltDB uses can be grouped, loosely, into three buckets:

• Persistent

• Semi-persistent

• Temporary

Persistent memory is, as you might expect, the memory used for storing actual database records, including
tables, indexes, and views. The larger the volume of data in the database, the more memory required to
store it. String and varbinary columns longer than 63 bytes are not stored in line. Instead they are stored
as pointers to the content in a separate string storage area, which is also part of persistent memory.

Semi-persistent memory is used for temporary storage while processing SQL statements and certain system
procedures. In particular, semi-persistent memory includes temporary tables and the undo buffer.

• Temporary tables are where data is processed as part of an SQL statement. For example, if you execute
an SQL statement like SELECT * FROM flight WHERE DESTINATION="LAX", all of the tuples
meeting the selection criteria are copied into temporary tables before being returned to the initiator.
If the stored procedure is multi-partitioned, each partition creates a copy of its tuples and the initiator
merges the multiple copies.

• The undo buffer is also associated with the execution of SQL statements. Any tuples that are modified
or deleted as part of an SQL statement are recorded in the undo buffer until the transaction is committed
or rolled back.

Semi-persistent memory is also used for buffers related to system activities such as snapshots and export.
While a snapshot is occurring, a certain amount of memory is required for overhead, as well as copy-on-
write buffers. Normally, snapshots are written directly from the tables in memory, thus requiring no addi-
tional overhead. However, if snapshots are non-blocking (performed asynchronously while other transac-
tions are executing), any tuples that need to be modified before they are written to the snapshot get copied
into semi-persistent memory. This technique is known as "copy-on-write". The consequence is that mixing
asynchronous snapshots with frequent deletes and updates will increase the memory usage.

Similarly, when export is enabled, any insertions into export-only tables are written to an export buffer in
semi-persistent memory until the export connector sends the data to the export target.

Understanding Volt-
DB Memory Usage

24

Temporary memory is used by VoltDB to manage the queueing and distribution of procedures to the
individual partitions. Temporary memory includes the queue of pending procedure invocations as well as
buffers for the return values for the completed procedures (until the client application retrieves them).

Figure 5.1, “The Three Types of Memory in VoltDB” illustrates how the three types of memory are allo-
cated in VoltDB.

Figure 5.1. The Three Types of Memory in VoltDB

The sum of the persistent, semi-persistent, and temporary memory is what makes up the total memory
(what is referred to as resident set size, or RSS) used by VoltDB on the server.

5.2. Actions that Impact Memory Usage
There are a number of actions that impact the amount of memory VoltDB uses during operation. Obviously,
the more data that is stored within the partition (including all tables, indexes, and views), the more memory
is required for persistent storage. Similarly for snapshotting and export, when these functions are enabled,
they require some amount of semi-persistent storage. However, under normal conditions, the memory
requirements for snapshotting and export should be relatively consistent over time.

Temporary storage, on the other hand, fluctuates depending on the workload and type of transactions
being executed. If the client applications are "firehosing" (sending stored procedure requests faster than the
servers can process them), the temporary storage required for pending procedure invocations will grow.
Similarly, if the parameters being submitted to the procedures or the data being returned is large in size
(up to 50 megabytes per procedure), the buffer for return values can grow significantly.

The nature of the workload also has an impact on the amount of semi-persistent storage. Read-only queries
do not require space in the undo buffer. However, complex queries and queries that return large data sets

Understanding Volt-
DB Memory Usage

25

require space for temporary tables. On the other hand, update and delete queries can take up significant
space in the undo buffer, especially when a single transaction (or stored procedure) performs multiple
queries, each requiring undo support.

The use of the temporary and semi-persistent storage explains fluctuations that can be seen in overall
memory utilization of servers running VoltDB. Although delete operations do eventually release memory
used by the persistent storage, they initially require more memory in the undo buffer and for any temporary
table operations. Once the entire transaction is complete and committed, the space in persistent storage
and undo buffer is freed up. Note, however, that the unused space may not immediately be visible in the
system RSS reports. The amount of memory in use and the amount of memory allocated can vary as a
result of the interaction of several different memory management schemes that all come into play.

When VoltDB frees up space in persistent storage, it does not immediately return that memory to the
operating system. Instead, it keeps track of unused space, which is then reused the next time a tuple is
stored. Over time, memory can become fragmented. If the fragmentation reaches a preset level, the memory
is compacted and unused space is deallocated and returned to the operating system.

Figure 5.2. Details of Memory Usage During and After an SQL Statement

Figure 5.2, “Details of Memory Usage During and After an SQL Statement” illustrates how a delete op-
eration can have a delayed effect on overall memory allocation.

1. At the beginning of the transaction, the deleted tuples are recorded in the semi-persistent undo buffer,
increasing memory usage. Any freed persistent storage is returned to the VoltDB list of free space.

2. At the end of the transaction, the undo buffer is freed. However, the storage for the deleted tuples in
persistent storage is managed and may not be released immediately.

3. Over time, free memory is used for new tuples, until...

Understanding Volt-
DB Memory Usage

26

4. At some point, VoltDB compacts any fragmented memory and releases unused blocks to the system.

How and when memory is actually deallocated depends on what that memory is being used for and how it
is managed. The following section Section 5.3, “How VoltDB Manages Memory” describes how VoltDB
manages memory in more detail.

Finally, there are some combinations of factors that can aggravate the fluctuations in memory usage. The
memory required for snapshotting is usually not significant. However, if non-blocking snapshots are in-
termixed with update-heavy transactions, the snapshot copy-on-write buffer can grow rapidly.

Similarly, the memory used for export can grow if export is enabled but the connector cannot reach the
target destination to clear the export buffer. However, the export buffer size is constrained; after a certain
point any additional export data that is not acknowledged by the connector is written out as export overflow
to disk. So memory used for export queues does not grow indefinitely.

5.3. How VoltDB Manages Memory
To manage memory effectively, VoltDB does not immediately release all unused memory. Allocating
and deallocating small chunks of memory frequently can be expensive. Instead, VoltDB manages unused
memory until larger chunks are available. Similarly, the Java runtime and the operating system perform
their own memory pooling techniques.

As a result, RSS is not an exact measurement of actual memory usage. However, VoltDB offers statistics
that provide a detailed breakdown of how it is using the memory that it has currently allocated. These sta-
tistics provide a more meaningful representation of VoltDB's memory usage than the lump sum allocation
reported by the operating system RSS.

VoltDB manages memory for persistent and semi-persistent storage aggressively to ensure unused space
is compacted and released when available. In some cases, memory is returned to the operating system,
making the RSS more responsive to changes in the database contents. In other cases, where memory is
managed as a pool of resources, VoltDB provides detailed statistics on what memory is allocated and what
is actually in use.

Persistent storage for database tables (tuples) and indexes is compacted when fragmentation reaches a set
percentage of total memory. Compaction eliminates fragmentation and allows memory to be returned to
the operating system as the database volume changes. At the same time, storage for variable data such as
strings and varbinary data greater than 63 bytes in length is being managed as a pool of resources. Free
memory in the pool is not immediately returned to the operating system. VoltDB holds and reuses memory
that is allocated but unused for these objects.

The consequence of these changes is that when you delete rows, the allocated memory for VoltDB (as
shown by RSS) may go up during the delete operation (to allow for the undo buffer), but then it will go
down — by differing amounts — based on the type of content that is deleted. Memory for tuples not
containing large strings or binary data is returned to the operating system quickly. Memory for large string
and binary data is not returned but is held for later reuse.

In other words, the pool size for non-inline string and binary data tends to reach a maximum size (based
on the maximum required for your application workload) and then stabilize. Whereas memory for indexes
as well as numeric and short string data oscillates as your application needs vary.

To help you understand these changes, the @Statistics system procedure tells you how much memory
VoltDB is using and how much unused memory is being held for each type of content. These statistics
provide a more accurate view of actual memory usage than the lump sum value of system RSS.

Understanding Volt-
DB Memory Usage

27

5.4. How Memory is Allocated and Deallocated
Technically, persistent and semi-persistent memory within VoltDB is managed using code written in C++.
Temporary memory is managed using code written in Java. What language the source code is written
in is not usually relevant, except in the case of memory, because different languages manage memory
differently. C++ uses the traditional explicit allocation and deallocation of memory, where the application
code controls exactly how and when memory is assigned and deassigned. In Java, memory is not explicitly
allocated and deallocated. Instead, Java uses what is called "garbage collection" to free up memory that
is not in use.

To complicate matters, the language libraries themselves do some performance optimizations to avoid
allocating and deallocating memory from the operating system too frequently. So even if VoltDB explicitly
frees memory in persistent or semi-persistent storage, that memory may not be immediately returned to
the operating system or alter the process's perceived RSS value.

For temporary storage (which is managed in Java), VoltDB cannot explicitly control memory allocation
and deallocation and relies on the Java virtual machine (JVM) to manage memory appropriately. The JVM
decides when and how to collect free space from unused objects. This means that the VoltDB server cannot
directly control if and when the memory associated with temporary storage is returned to the operating
system.

5.5. Controlling How Memory is Allocated
Despite the fact that you as a developer or database administrator cannot control when temporary storage
is allocated and freed, you can control how much memory is used. Java provides a way to specify the size
of the heap, the portion of memory the JVM uses to store runtime data such as class instances, arrays,
etc. The -Xms and -Xmx arguments to the java command specify the initial and maximum heap size,
respectively.

By setting both the -Xmx and -Xms arguments, you can control not only the maximum amount of memory
used, but also the amount of fluctuation that can occur. Figure 5.3, “Controlling the Java Heap Size”
illustrates how the -Xms and -Xmx arguments can be used to control the overall size of temporary storage.

Understanding Volt-
DB Memory Usage

28

Figure 5.3. Controlling the Java Heap Size

However, you must be careful when setting the values for the Java heap size, since the JVM will not exceed
the value you set as a maximum. It is possible, under some conditions, to force a Java out-of-memory
error if the maximum heap size is not large enough for the temporary storage VoltDB requires. See the
VoltDB Planning Guide for recommendations on calculating the appropriate heap size for your specific
application.

Remember, temporary storage is used to queue the procedure requests and responses. If you are using syn-
chronous procedures calls (and therefore little or no queuing on the server) a small heap size is acceptable.
Also, if the size of the procedure invocations (in terms of the arguments passed into the procedures) and the
return values are small, a lower heap size is acceptable. But if you are invoking procedures asynchronously
with large argument lists or return values, be very careful when setting a low maximum heap size.

5.6. Understanding Memory Usage for Specific Ap-
plications

To help understand the memory usage for a specific VoltDB database, the @Statistics system procedure
provides memory usage information. The "MEMORY" keyword returns a separate row of data for each
server in the cluster, with columns providing information about the different aspects of memory usage,
as described in the following table.

Column Type of Storage Description

JAVAUSED Temporary The amount of memory currently in use for tempo-
rary storage.

JAVAUNUSED Temporary The maximum amount of Java heap allocated but
not currently in use.

TUPLECOUNT Persistent The number of tuples currently being held in mem-
ory.

TUPLEDATA Persistent The amount of memory in use to store inline table
data.

http://voltdb.com/docs/PlanningGuide/

Understanding Volt-
DB Memory Usage

29

Column Type of Storage Description

TUPLEALLOCATED Persistent The amount of memory allocated for table storage.
This includes the amount in use and any free space
currently being held by VoltDB.

INDEXMEMORY Persistent The approximate amount of memory in use to store
indexes.

STRINGMEMORY Persistent The approximate amount of memory in use for non-
inline string and binary storage.

POOLEDMEMORY Persistent The total amount allocated to pooled memory, in-
cluding the memory assigned for storing strings, in-
dexes, free lists, and metadata associated with tuple
storage.

RSS All The resident set size for the VoltDB server process.

You can use periodic calls to the @Statistics system procedure with the "MEMORY" keyword to track
your database cluster's memory usage in detail. But if you are only looking for an overall picture, VoltDB
provides simple graphs at runtime.

Connect to a VoltDB server's HTTP port (by default, http://<server-name>:8080) to see graphs of basic
memory usage for that server, including total resident set size (RSS), used Java heap and unused Java heap.
Memory statistics are collected and displayed over three different time frames: 2 minutes, 30 minutes, and
24 hours. Click on the web browser's refresh button to update the charts.

30

Chapter 6. Managing Time
In previous versions of VoltDB, all transactions were globally coordinated, using system time to order and
schedule each transaction. As a result, even small differences in clock time between nodes could impact
latency in the system.

Starting with version 3.0, transactions are no longer globally coordinated and differences in system clocks
no longer directly impact database latency. However, there are still some database activities that need to be
globally managed, such as when the database starts or failed nodes rejoin the cluster. For these activities,
differences in clock time can impact — or, if the skew is large enough, even interrupt — proper operation.

That is why it is important to ensure a stable and consistent view of time within a VoltDB cluster. This
chapter presents some best practices for configuring and managing time using NTP.

If you are familiar with NTP or another service and have a preferred method for using it, you may want to
read only Section 6.1, “The Importance of Time” and Section 6.2.2, “Troubleshooting Issues with Time”.
If you are not familiar with NTP, this chapter suggests an approach that has proven to provide useful
results in most situations.

The following sections explain:

• Why time is important to a VoltDB cluster

• How to use NTP to manage time across the cluster

• Special considerations when using VoltDB in a hosted or cloud environment

6.1. The Importance of Time
Because certain operations require coordination between the server nodes, it is important that they agree
on what time it is. When the database process starts, VoltDB determines the maximum amount of skew
(that is, the difference in clock time) between the individual nodes in the cluster. If the skew is greater than
100 milliseconds (1/10th of a second), the VoltDB cluster refuses start.

6.2. Using NTP to Manage Time
NTP (Network Time Protocol) is a protocol and a set of system tools that help synchronize time across
servers. The actual purpose of NTP is to keep an individual node's clock "accurate". This is done by having
the node periodically synchronize its clock with a reference server. You can specify multiple servers to
provide redundancy in case one or more time servers are unavailable.

The important point to note here is that VoltDB doesn't care whether the cluster view of time is "correct"
from a global perspective, but it does care that they all have the same view. In other words, it is important
that the nodes all synchronize to the same reference time and server.

6.2.1. Basic Configuration
To manage time effectively on a VoltDB cluster you must:

• Start NTP on each node

• Point each instance of NTP to the same set of reference servers

Managing Time

31

You start NTP by starting the NTP1 service, or daemon, on your system. On most systems, starting the NTP
daemon happens automatically on startup. You do not need to perform this action manually. However,
if you need to make adjustments to the NTP configuration, it is useful to know how to stop and start the
service. For example, the following command starts the daemon2:

$ service ntp start -x

You specify the time server(s) in the NTP configuration file (usually /etc/ntp.conf). You can specify
multiple servers, one server per line. For example:

server clock.psu.edu

The configuration file is read when the NTP service starts. So, if you change the configuration file after
NTP is running, stop and restart the service to have the new configuration options take affect.

6.2.2. Troubleshooting Issues with Time
In many cases, the preceding basic configuration is sufficient. However, there are issues that can arise
time varies within the cluster.

If you are unsure whether a difference between the clocks in your cluster is causing performance issues
for your database, the first step is to determine how much clock skew is present. When the VoltDB server
starts it reports the maximum clock skew as part of its startup routine. For example:

INFO - HOST: Maximum clock/network skew is 12 milliseconds (according to leader)

If the skew is greater than 100 milliseconds, the cluster refuses to start. But if the skew is close to but still
under 100 milliseconds, it is difference can delay certain operations and the nodes may drift farther apart
in the future. The most common issues when using NTP to manage time are:

• Time drifts between adjustments

• Different time servers reporting different times

6.2.3. Correcting Common Problems with Time
The NTP daemon checks the time servers periodically and adjusts the system clock to account for any drift
between the local clock and the reference server (by default, somewhere between every 1 to 17 minutes).
If the local clock drifts too much during that interval, it may never be able to fully correct itself or provide
a consistent time value to VoltDB.

You can reduce the polling interval by setting the minpoll and maxpoll arguments as part of the server
definition in the NTP configuration file. By setting minpoll and maxpoll to a low value (measured as
exponential values of 2 seconds), you can ensure that the VoltDB server checks more frequently. For
example, setting minpoll and maxpoll to 4 (that is, 16 seconds), you ensure the daemon polls the reference
server approximately every minute3.

It is also possible that the poll does not get a response. When this happens, the NTP daemon normally waits
for the next interval before checking again. To increase the likelihood of receiving a new reference time
— especially in environments with network fluctuations — you can use the burst and iburst arguments to
increase the number of polls during each internal.

1The name of the NTP service varies from system to system. For Debian-based operating systems, such as Ubuntu, the service name is "ntp". For
Red Hat-based distributions, such as CentOS, the service name is "ntpd".
2Use of the -x option is recommended. This option causes NTP to "slew" time — slowly increasing or decreasing the clock to adjust time — instead
of making one-time jumps that could create sudden changes in clock skew for the entire cluster.
3The default values for minpoll and maxpoll are 6 and 10, respectively. The allowable value for both is any integer between 4 and 17 inclusive.

Managing Time

32

By combining the burst, iburst, minpoll, and maxpoll arguments, you can increase the frequency that the
NTP daemon synchronizes and thereby reduce the potential drift of the local server's clock. However, you
should not use these arguments with public servers, such as the ones included in the NTP configuration
file by default. Excessive polling of public servers is considered impolite. Instead, you should only use
these arguments with a private server (as described in Section 6.2.4, “Example NTP Configuration”). For
example, the ntp.conf entry might look like the following:

server myntpsvr iburst burst minpoll 4 maxpoll 4

Even if your system synchronizes with an NTP server, there can be skew between the reference servers
themselves. Remember, the goal of NTP is to synchronize your system with a reference time source, not
necessarily to reduce the skew between multiple local systems. Even if the polling frequency is improved
for each node in a VoltDB cluster, the skew between them may never reach an acceptable value if they
are synchronizing against different reference servers.

This situation is made worse by the fact that the most common host names for reference servers (such
as ntp.ubuntu.com) are not actual IP addresses, but rather front ends to a pool of servers. So even if the
VoltDB nodes have the same NTP configuration file, they might not end up synchronizing against the
same physical reference server.

You can determine what actual servers your system is using to synchronize by using the NTP query tool
(ntpq) with the -p argument. The tool displays a list of the servers it has selected, with an asterisk (*)
next to the server currently in use and plus signs (+) next to alternatives in case the primary server is
unavailable. For example:

$ ntpq -p
 remote refid st t when poll reach delay offset jitter
==
+dns3.cit.cornel 192.5.41.209 2 u 14 1024 377 32.185 2.605 0.778
-louie.udel.edu 128.4.1.20 2 u 297 1024 377 22.060 3.643 0.920
 gilbreth.ecn.pu .STEP. 16 u - 1024 0 0.000 0.000 0.000
*otc2.psu.edu 128.118.2.33 2 u 883 1024 377 29.776 1.963 0.901
+europium.canoni 193.79.237.14 2 u 1017 1024 377 90.207 2.741 0.874

Note that NTP does not necessarily choose the first server on the list and that the generic host names are
resolved to different physical servers.

So, although it is normal to have multiple servers listed in the NTP configuration file for redundancy, it can
introduce differences in the local system clocks. If the maximum skew for a VoltDB cluster is consistently
outside of acceptable values, you should take the following steps:

• Change from using generic host names to specific server IP addresses (such as otc2.psu.edu or
128.118.2.33 in the preceding example)

• List only one NTP server to ensure all VoltDB nodes synchronize against the same reference point

Of course, using only one reference server for time introduces a single point of failure to your environ-
ment. If the reference server is not available, the database nodes receive no new reference values for time.
The nodes continue to synchronize as best they can, based on the last valid reference time and historical
information about skew. But over time, the clock skew within the cluster will start to drift.

6.2.4. Example NTP Configuration
You can provide both redundancy and maintain a single source for time synchronization, by creating your
own NTP server.

Managing Time

33

NTP assumes a hierarchy (or strata) of servers, where each level of server synchronizes against servers
one level up and provides synchronization to servers one level down. You can create your own reference
server by inserting a server between your cluster nodes and the normal reference servers.

For example, assume you have a node myntpsvr that uses the default NTP configuration for setting its own
clock. It can list multiple reference servers and use the generic host names, since the actual time does not
matter, just that all cluster nodes agree on a single source.

Then the VoltDB cluster nodes list your private NTP server as their one and only reference node. By doing
this, all the nodes synchronize against a single source, which has strong availability since it is within the
same physical infrastructure as the database cluster.

Of course, there is always the possibility that access to your own NTP server could fail, in which case
the database nodes need a fallback to ensure they continue to synchronize against the same source. You
can achieve this by:

• Adding all of the cluster nodes as peers of the current node in the NTP configuration file

• Adding the current node (localhost) as its own server and setting it as a low level stratum (for example,
stratum 10)

By listing the nodes of the cluster as peers, you ensure that when the reference server (myntpsvr in this
example) becomes unavailable, the nodes will negotiate between themselves on an alternative source. At
the same time, listing localhost (127.127.0.1) as a server tells the node that it can use itself as a reference
server. In other words, the cluster nodes will agree among themselves to use one of their own as the
reference server for synchronizing time. Finally, by using the fudge statement to set the stratum of localhost
to 10, you ensure that the cluster will only pick one of its own members as a reference server for NTP if
the primary server is unavailable.

Example 6.1, “Custom NTP Configuration File” shows what the resulting NTP configuration file might
look like. This configuration can be the same on all nodes of the cluster, since peer entries referencing
the current node are ignored.

Example 6.1. Custom NTP Configuration File

server myntpsvr burst iburst minpoll 4 maxpoll 4

peer voltsvr1 burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1
fudge 127.127.0.1 stratum 10

6.3. Configuring NTP in a Hosted, Virtual, or Cloud
Environment

The preceding recommendations for using NTP work equally well in a managed or a hosted environment.
However, there are some additional issues that can arise when working in a hosted environment that should
be considered.

In a locally managed environment, you have complete control over both the hardware and software con-
figuration. This means you can ensure that the VoltDB cluster nodes are connected to the same switch and

Managing Time

34

in close proximity to a private NTP server, guaranteeing the best network performance within the cluster
and to the NTP reference server.

In a hosted environment, you may not have control over the physical arrangement of servers but you
usually have control of the software configuration.

In a virtualized or cloud environment, you have no control over — or even knowledge of — the hardware
configuration. You are often using a predefined system image or "instance", including the operating system
and time management configuration, which may not be appropriate for VoltDB. There are configuration
changes you should consider making each time you "spin up" a new virtual server.

6.3.1. Considerations for Hosted Environments
In situations where you have control over the selection and configuration of the server operating system
and services, the preceding recommendations for configuring NTP should be sufficient. The key concern
would be those aspects of the environment you do not have control over: network bandwidth and reliabil-
ity. Again, the recommended NTP configuration in Section 6.2.4, “Example NTP Configuration”, espe-
cially the use of a local timer server and peer relationship within the cluster, should provide reliable time
management despite any network fluctuations.

6.3.2. Considerations for Virtual and Cloud Environments
In virtual or cloud environments, you usually do not have control over either the hardware or the initial
software configuration. New servers are instantiated from a common system image, or "instance", with
default configurations for the operating system and time management. This presents two problems for
establishing a reliable environment for VoltDB:

• The default configuration may not be sufficient and must be overridden

• Because of the prior issue, there can be considerable clock skew that must be corrected before running
VoltDB

Virtualization allows multiple virtual servers to run on a single piece of hardware. To do this, prepackaged
"instances" of an operating system are booted under a virtual machine manager. These instances are de-
signed to support the majority of applications, most of which do not have extensive requirements for clock
synchronization, As a result, the instances often use default NTP configurations or none at all.

When you spin up a new virtual server, in most cases you need to reconfigure NTP, changing the config-
uration file as described in Section 6.2.4, “Example NTP Configuration” and restarting the service.

In some cases, NTP is not used at all. Instead, the operating system synchronizes its (virtual) clock against
the clock of the physical server on which it runs. You need to override this setting before installing, con-
figuring, and starting NTP. For example, when running early instances of Ubuntu in EC2 under the Xen
hypervisor, you must modify the file /proc/sys/xen/independent_wallclock to avoid the hy-
pervisor performing the clock synchronization. For example:

$ echo "1" > /proc/sys/xen/independent_wallclock
$ apt-get install -y ntp

This particular approach is specific to the Xen hypervisor. Other virtualization engines may use a different
approach for controlling the system clock. See the documentation for your specific virtualization environ-
ment for details.

Once NTP is running and managing the system clock, it can take a considerable amount of time for the
clocks to synchronize if the initial skew is large. You can reduce this initial delay by forcing synchroniza-
tion before you start VoltDB. You can do this performing the following steps as the user root:

Managing Time

35

1. Stop the NTP service.

2. Use the ntpdate command to synchronize against a specific reference server. Do this several times
until the reported skew is consistently low. (It will never effectively be less than a millisecond — a
thousandth of a second — but can be reduced to a few milliseconds.)

3. Restart the NTP Service.

For example, if your local time server's IP address is 10.10.56.1, the commands might look like this:

$ service ntp stop
 * Stopping NTP server ntpd [OK]
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:04 ntpdate[2795]: adjust time server 10.10.56.1 offset 0.008294 sec
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:08 ntpdate[2797]: adjust time server 10.10.56.1 offset 0.002518 sec
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:12 ntpdate[2798]: adjust time server 10.10.56.1 offset 0.001459 sec
$ service ntp start -x
 * Starting NTP server ntpd [OK]

Once NTP is configured and the skew between the individual clocks and the reference server has been
minimized, you can safely start the VoltDB database.

