

A memcached-compatible Key/Value

store built on the VoltDB RDBMS

VoltDB, Inc.
www.voltdb.com
Twitter: @voltdb

the NewSQL database for high velocity applications

http://www.voltdb.com/

1

About This Paper

Memcached is a popular Key/Value caching solution for high scaling web applications, known for
its performance and programming ease. However, as applications become more complex,
memcached’s limitations create challenges for developers and operations teams.

This paper discusses VoltCache, an alternative to memcached. Built on the blazing-fast VoltDB
RDBMS, VoltCache overcomes many of memcached’s challenges without sacrificing
performance or simplicity of programming.

Read this paper to learn about:

 Database throughput reaching millions of operations per second

 Why VoltDB’s scale-out architecture is a perfect match for Key/Value caching

 How VoltCache can simplify programming and overcome common K/V challenges

 How VoltCache performs against memcached/MySQL and Membase

 What’s inside the VoltCache Key/Value function library

Table of Contents

Getting the Best Performance From High-Scaling Web Apps ... 2

The Basics of Key/Value Caching ... 2

The Data Management Pitfalls of Key/Value Caching ... 3

VoltCache: Database, Meet Cache .. 4

An Ultra-Fast, Integrated Database and Cache Solution ... 4

Performance Comparisons .. 6

Single-Node Benchmarks ... 6

Multi-Node Benchmarks ... 7

Performance Analysis: Membase vs. VoltCache ... 8

Summary.. 9

Getting Started with VoltDB and VoltCache.. 10

VoltDB Demo Dashboard ... 10

Appendix A – VoltCache API .. 11

2

Getting the Best Performance From High-Scaling Web Apps

If you are building an application for the web, you are building for scale. Today’s web apps have
the opportunity to achieve global reach, offering a high degree of interactivity to millions of
users.

As a result, speed matters – not only in terms of application performance, but also in your ability
to deliver working systems to hungry users quickly. So to get out of the gate fast, many Web 2.0
developers begin building their application with a relational database management system
(RDBMS) like MySQL. This data storage model is very popular, comes built into many modern
coding frameworks, and has been proven across many applications.

However, once your app begins to experience heavy use, RDBMS performance often hits a wall.
Successful web applications reach a demand profile where normal traffic stresses the data tier,
and spikes simply cause things to stop working entirely.

A popular solution to this problem is to augment the RDBMS with a Key/Value (K/V) cache such
as memcached. This optimization offloads most read operations from the database. Thus, reads
are faster because they’re serviced primarily from the cache, and writes (transactions) are faster
because they’re not contending with reads.

The Basics of Key/Value Caching

A traditional relational database is designed to protect the integrity of the data it holds,
delivering it consistently and accurately to any client that requests it. It ensures that the
relationships inherent in the data are preserved, even throughout the most complex, multi-step
transactions. The database developer codes the rules of integrity through schema, transactional
programming, and other RDBMS features.

By contrast, a Key/Value cache is a lightweight, easy-to-
implement store that allows programs to store and access
arbitrary structures, or blobs, of data, simply by providing a
lookup key. K/V systems are often used to optimize performance.
An application retrieves data from its database, stores it in the
cache, and then the next time it needs that data it can get it right
from the cache, avoiding the database altogether.

K/V concepts are easily understood by software engineers trained in object-oriented
programming. Common uses for K/V caches include:

 Dynamically-generated web pages

 User-based session data

 Images and videos to be served to web and mobile clients

 Top viewed or most recent posts, articles, news stories, and similar content

There are a number of proven design patterns for working with a K/V cache. (However, some
complexities are hidden beneath the surface and don’t become evident until a production
database begins to scale).

The most popular
Key/Value cache is

memcached, an open
source main memory

K/V store.

3

A Typical Cache Architecture

from http://architects.dzone.com

A typical K/V cache implementation scenario is to pair memcached with a RDBMS like MySQL.
The interplay between application, cache and database is roughly as follows:

 Before the app performs a database query, it looks for the data in the cache.

 If it doesn’t find the data there, it retrieves the data from the database, delivers it to the

user and writes it to the cache.

 The next time that query is executed, the application will find the data in the cache and

avoid the database read.

 When the application updates a database record, it must also invalidate the associated

cache record, effectively removing the stale data from the cache.

 After the cache has been invalidated, the next time the application queries for that data,

it will start the cycle all over again.

These mechanics, while fairly well understood, mean that a significant amount of data
“housekeeping” code exists in the application tier to manage cache locations and invalidation
logic. This increases the complexity – and brittleness – of the overall application, especially as its
features and functions grow over time. It also does nothing to improve the raw write
throughput of the underlying database.

The Data Management Pitfalls of Key/Value Caching

Although K/V caching can be an effective scaling solution, the benefits begin to break down as a
database grows in size, complexity and workload. Common challenges include:

 Applications must do their own data partitioning. A typical memcached

implementation requires the client application code to manage the cache partitioning

scheme. Although the access

patterns are pretty well understood,

this code nonetheless represents

additional code complexity, failure

points and operational process.

 Complexity increases with scale.

Sharding and managing a database

(e.g., MySQL) that’s front-ended by

a caching tier (e.g., memcached) can

be a house of horrors. Imagine a

manually-sharded MySQL database

with multiple memcached

servers/shard. Not only does the

application have to explicitly perform operations on this storage cocktail, operations

teams must somehow work out how to monitor the infrastructure and manage its

loosely-connected components. As the database grows, the complexity of managing

this infrastructure is compounded.

4

 De-normalization is burdensome. As application usage grows, it’s common for users to

demand more flexible access to their data. To the degree that user queries are serviced

by data stored in de-normalized structures (i.e., a BLOB in a K/V datastore), an

application must decompose that structure, maintain its state and possibly even

perform complex operations on the data.

VoltCache: Database, Meet Cache

The inspiration for VoltCache was user demand. Some developers simply prefer a K/V data
model but need many of the features of a robust RDBMS, including ACID transactions. So we
implemented VoltCache in response to our customers’ requests for a caching system based on
VoltDB. Essentially, VoltCache is a K/V data model and stored procedures, implemented on
VoltDB, and accessed via a memcached-compatible function library.

We benchmarked the performance of VoltCache against Membase and memcached/MySQL.
Our test results, which are presented later in this paper, reveal that VoltCache generally
outperforms these technologies at scale. Like Membase, VoltCache delivers the throughput and
simplicity of an in-memory database; like memcached/MySQL, VoltCache delivers the power of
a full ACID compliant RDBMS behind the K/V cache, easily supporting high velocity mixed-
workload applications.

An Ultra-Fast, Integrated Database and Cache Solution

VoltCache is based on the VoltDB database, a breakthrough RDBMS specifically designed to run
on modern scale-out infrastructures – fast, inexpensive servers connected via high-speed data
networks.

At its core, VoltDB delivers all the features you expect from a clustered RDBMS, including SQL
support, ACID-level consistency, developer APIs, and data integration and expert interfaces.

However, VoltDB differs from traditional RDBMSs in some very important ways:

Ultra-fast, in-memory database that performs magnitudes faster than traditional RDBMS
products on a per-node basis.

Shared-nothing scale-out architecture with transparent data partitioning for horizontal,
massively parallel scalability and simplified client code.

Built-in fault tolerance and durability that use replication, single-threaded in-partition
execution, and native transaction processing.

Designed to handle high-velocity data, playing nicely with Hadoop and OLAP data
warehouse products.

Under the hood, the key to VoltDB’s architecture is its natively partitioned data model. VoltDB
uses multiple execution engines that process small work tasks in different data partitions. Unlike
a traditional database operating a single execution engine, VoltDB allows you to easily increase
the throughput of the database simply by increasing the number of execution engines. This
model delivers massive scalability at a fraction of the cost, because execution engines can
execute on commodity servers instead of expensive monoliths.

5

VoltCache: A Memcached Interface on VoltDB

VoltCache was implemented in two stages. First, in response to numerous user inquiries, we

modeled a simple K/V store on VoltDB and created stored procedures that support standard

PUT/GET/DELETE operations. The result is a fast, scalable K/V store that inherently leverages all

of VoltDB’s partitioning, fault tolerance and durability features. It’s also easy to extend VoltKV –

for example, you can easily add columns to a VoltKV application for custom data sub-filtering, to

further improve performance.

For common K/V workloads, VoltKV to easily out-paces Cassandra and other K/V stores. More

benchmarking information is available here on the Voltage blog.

Second, with basic K/V support in place, we implemented an API that’s functionally equivalent
to memcached (hence, the name VoltCache). This function call interface supports all common
K/V operations and adds constructs for counting, expiration and update. And, again, because it
is built on the VoltDB relational engine, you can easily expand VoltCache to support richer
functionality, workloads and data objects.

Building client applications in VoltCache is semantically identical to building memcached
applications. A summary of the VoltCache API is provided in Appendix A. Developers who have
built systems using the combination of memcached/MySQL will find VoltCache to be easier to
use (no more need for complex cache synchronization), easier to operate (no need to pre-warm
your cache or hassle with multi-step back-ups), and much faster at runtime. Most importantly,
VoltCache carries with it all the benefits of the VoltDB RDBMS, including:

 Data partitioning built into the engine. You no longer need to handle partitioning in the

client application code. VoltCache leverages VoltDB’s embedded partitioning

capabilities, meaning your code is less complex, and scaling is transparent to your

application.

 Data consistency. VoltDB is a relational database that delivers ACID level transaction

consistency. VoltCache combines a popular K/V programming model with high

throughput ACID writes. With VoltCache, K/V app developers no longer have to sacrifice

performance and consistency.

 Disk-based durability. While most K/V solutions allow you to save transactions to disk,

they do so asynchronously, which means there is a window during which a failure could

result in the loss of data. VoltDB, and VoltCache by extension, allow you to persist data

either synchronously or asynchronously. You can easily optimize latency and durability

to suit the needs of your application.

http://voltdb.com/company/blog/key-value-benchmarking

6

Performance Comparisons

We benchmarked VoltCache against memcached/MySQL in a single-node configuration, and
Membase in both single-node and clustered configurations. We chose memcached/MySQL
because it’s a popular combination for gaining optimizing the performance of Web application
databases. We chose Membase because it’s a NoSQL product based on memcached and offers
integrated features not found in the memcached/MySQL combination.

During our testing, we found that Membase could run the benchmark comparisons with better
throughput and lower average latency when we used the Xmemcached Java client instead of the
Spymemcached Java client Membase recommends. Thus, our performance graphs show results
for Membase’s recommended configuration (using Spymemcached) and “Membase
(Optimized)”, for which we used Xmemcached.

Single-Node Benchmarks

Our first test suite was designed to reveal how each system would perform on a single-server
deployment. In this test, the client and server components were all run on a single machine. The
client executed PUT and GET operations against the server in varying ratios, for ten minutes at a
time. We measured overall throughput and average latency for each product configuration.

Benchmark System Specifications Benchmark Test

 Dell Studio XPS 9100 Workstation

 Single-Quad-core Intel i7 930 @ 2.80GHz

 4 Effective Cores, 8 Virtual cores

 RAM: 12GB @ 1333MHz

 HD: Standard 7,200RPM SATA Drives (No RAID)

 OS: Ubuntu 11.04 x64 (Kernel version: 2.6.38-11-

generic)

 Java: OpenJDK 6 fully patched

 Everything local (server &

client)

 10 minute runs @ different

GET/PUT ratios and thread

counts

 100 thread-count was “fairest”

comparison

7

Latency (Lower is Better)

The latency of VoltCache
compares very favorably with
memcached/MySQL,
particularly as write workloads
increase. Average latencies of
VoltCache and “optimized”
Membase were virtually
identical at all workload
combinations.

Throughput (Higher is Better)

VoltCache leveraged VoltDB’s
in-memory transaction engine
to sustain high write
throughput. “Optimized”
Membase sustained a similar
throughput profile. It’s
noteworthy that VoltCache
achieved these single-node
throughput numbers while
performing ACID transactions.

Multi-Node Benchmarks

Our second test suite was designed to compare the performance of small (3-node) Membase
and VoltCache clusters. Note that we could not include memcached/MySQL in these tests
because MySQL is a single-node database. Our multi-node test included three separate client
systems running against three server nodes. Note that since Membase only provides
asynchronous persistence, all tests were run in that mode. However, VoltDB also provides a
synchronous durability option.

Benchmark System Specifications Benchmark Test

 Dell PowerEdge R610

 Dual-Quad-core Intel Xeon X5550 @ 2.67GHz (Hyper-

threaded; First Launched: Q1 2009)

 8 Effective Cores, 16 Virtual cores

 RAM: 48GB @ 1333MHz

 HD: Standard 7,200RPM SATA Drives (No RAID)

 OS: CentOS 5 x64 (Kernel version: 2.6.18-194.3.1.el5)

 Java: OpenJDK 6 fully patched

 3 server nodes, 3 client

nodes

 1 replica, and asynchronous

persistence

 10 minute runs @ different

GET/PUT ratios and thread

counts

8

Latency (Lower is Better)

In terms of latency, Membase
and VoltCache performed
comparably. In these tests,
clients were forced to hit the
Membase cache to avoid data
inconsistencies brought on by
Membase’s asynchronous
replication.

Throughput (Higher is Better)

VoltCache’s throughput
measurements revealed a
similar story. VoltCache
achieved better performance
because clients can reliably
connect to multiple nodes
without encountering
inconsistent data across
nodes.

Performance Analysis: Membase vs. VoltCache

Membase VoltCache

 Very good performance with low client

count

 Protocol sequencing ties requests to

individual threads and limits throughput

 Must use Google’s Xmemcached client (out-

of-the-box Spymemcached client yields sub-

optimal performance)

 Multi-threaded client fails with > 150

threads

 Performance degrades with increasing client

count – both throughput and most

noticeably latency

 Significant throughput degradation in multi-

node clusters with increasing PUT ratio

 Significant latency degradation in multi-

node clusters with increasing client count

 Ability to connect over 1,500 clients

from a single machine

 No protocol sequencing limitation,

resulting in better throughput

 No workload duplication to

synchronize nodes (memcached)

 Performance almost constant with

GET/PUT ratio

 Performance improves with increasing

client count

 Performance maintains scalability

profile on cluster deployment

 Lower performance with low client

count (< 25)

9

Summary

Memcached is a popular memory caching technology. It allows developers to offload repetitive
read operations from an underlying database (typically MySQL), thereby improving application
scale. Unfortunately, a basic memcached infrastructure also requires the application to
implement a lot of complex “housekeeping” between the cache and the underlying database,
especially as the application scales. Further, memcached does nothing to improve the
throughput and latency of the back-end database (MySQL) itself.

VoltDB is a main-memory RDBMS. It is designed specifically to handle high velocity read and
write workloads. Where disk-centric RDBMSs struggle to support tens of thousands of ACID
transactions per second, VoltDB can easily support millions per second.

At the request of several VoltDB users, we developed a reference implementation (called
VoltCache) of memcached using the VoltDB RDBMS. This simple application models a simple
Key/Value store on VoltDB, and provides an API that’s functionally equivalent to memcached.

We ran a few performance tests using VoltCache, memcached/MySQL and Membase (an open
source main memory alternative to memcached). Our tests revealed that VoltCache easily
outperformed memcached/MySQL in all scenarios, and performed comparably to an optimized
version of Membase in all scenarios.

VoltCache is freely available and prepackaged (including source code) with all distributions of
VoltDB. It provides a great starting point for developers who prefer K/V data models. And
because VoltCache is implemented on VoltDB, it also delivers the transactional consistency, HA
and durability needed for high scaling production applications.

10

Getting Started with VoltDB and VoltCache

VoltDB is available in two distributions – Community Edition and Enterprise Edition. The
VoltCache reference application is prepackaged with all VoltDB distros. Community Edition is
open source (GPL3) and geared toward developers who are building, testing and tuning VoltDB
applications. Enterprise Edition is provided under VoltDB's commercial license and is intended
for organizations that are deploying VoltDB applications into production. VoltDB runs natively
on supported 64-bit Linux systems. Developers can also build VoltDB applications on 64-bit Mac
OSX. VoltDB’s main software downloads page, including client libraries and documentation, can
be found here. Pre-packaged evaluation versions of VoltDB are available for Amazon EC2 and
VMWare:

VoltDB can be setup to run on a cluster of choice on Amazon EC2 within just a
few minutes. VoltDB for Amazon EC2 includes the VoltDB Demo Dashboard,
VoltDB Studio, sample applications and other developer resources. Get it here.

The VoltDB VMware image can be executed using a variety of VMware players.
Although VoltDB is a 64-bit Linux application, VMware allows it to execute as a
virtualized image on other platforms such as Windows. Get it here.

VoltDB Demo Dashboard

The VoltDB Demo Dashboard is bundled with all
VoltDB distributions. It’s a useful tool for product
evaluators and developers who are new to VoltDB,
providing convenient access to a variety of
introductory resources, including sample apps,
reference implementations and VoltDB Studio from a
simple browser based interface. Source code for most
resources in the Demo Dashboard is readily accessible
in the VoltDB installation directory.

To learn more about VoltDB, visit www.voltdb.com. The links below also provide quick access to
the most popular technical content on our website. To discuss your high performance database
needs with a VoltDB engineer, please call Sales at +1.978.528.4660 or send us an email.

http://voltdb.com/products-services/downloads
http://voltdb.com/products-services/downloads
http://voltdb.com/run-voltdb-aws
http://voltdb.com/run-voltdb-vmware
http://www.voltdb.com/
mailto:sales@voltdb.com?subject=Please%20Contact%20Me
http://voltdb.com/resources
http://voltdb.com/resources?quicktabs_3=1
http://voltdb.com/products-services/downloads
http://voltdb.com/products-services/downloads
http://voltdb.com/blog
http://community.voltdb.com/
http://voltdb.com/run-voltdb-aws
http://voltdb.com/run-voltdb-vmware

11

Appendix A – VoltCache API

Declarations

Synchronous API

Asynchronous API

