
TECHNICAL OVERVIEW
High performance, scalable RDBMS for

Big Data and Real-time Analytics

Overview
VoltDB is a relational database system (RDBMS) for high-
throughput, operational applications requiring:

Orders of magnitude better performance than a
conventional DBMS

SQL as the native data language

ACID transactions to ensure data consistency and integrity

Built-in high availability (database fault tolerance)

Database replication (for disaster recovery)

For these database applications, VoltDB offers substantial
performance and cost advantages as illustrated by the results
of the TPC-C-like benchmark below, in which VoltDB and a
well-known OLTP DBMS were compared running the same test
on identical hardware (Dell R610, 2x 2.66Ghz Quad-Core Xeon
5550 with 12x 4GB (48GB) DDR3-1333 Registered ECC DIMMs, 3x
72GB 15K RPM 2.5in Enterprise SAS 6GBPS Drives):

As shown above, VoltDB also provides near-linear scalability
running on low-cost clusters of commodity servers. It allows
application developers to scale their applications simply by
adding servers to a VoltDB cluster, instead of having to:

•	 Build complex and costly sharding layers

•	 Sacrifice data consistency to gain ultra-high
performance and scale

This white paper is for technical readers, and it explains:

The reasons why traditional databases are difficult and
expensive to scale

The “scale-out” VoltDB architecture and what

makes it different

VoltDB application design considerations

RDBMS Scaling Alternatives 		
and Costs

As an application’s popularity and usage increases, scaling it up
to support heavier operational workloads and run 24x7x365 can
be painful. The scalability bottleneck is often the DBMS.

To adapt to heavier workloads, an application may experience a
number of disruptive scaling events during its
lifecycle, including:

•	 Migration from an inexpensive commodity server to a
very expensive SMP server

•	R e-designing the database (and corresponding
application data access logic)

•	I mplementing a data partitioning or “sharding”
scheme—manually dividing the database into many
smaller databases running on different servers and
modifying application code to coordinate data access
across the partitions

•	I mplementing a key-value store (KV store), thereby
forfeiting transactional consistency and the ability
to use SQL

•	 Migration from an open source DBMS to a higher-scale
commercial DBMS such as Oracle

45x better throughput

2

Dealing with a fast-growing user workload is a good problem
to have, but the popular “scale-up” approaches to scalability
are costly, requiring expensive hardware and DBMS upgrades.
Scale-up approaches also add development complexity, and
increase overhead and maintenance costs. And no matter
what scheme is used, the opportunity cost is also high—time
spent fixing performance problems means less time spent
implementing higher-value business functionality.

What’s needed is a DBMS that “scales out” linearly and
limitlessly by adding new commodity servers to a shared-
nothing DBMS cluster. VoltDB is exactly that DBMS.

Why Traditional DBMSs have
Difficulty Scaling
In 2008, a team of researchers led by Mike Stonebraker
published a seminal paper in the ACM SIGMOD entitled “OLTP
Through the Looking Glass, and What We Found There.” The
paper exposed key sources of processing overhead that plague
traditional disk-based RDBMS products, and concluded that
removing those overheads and running the database in main
memory would yield orders of magnitude improvements in
database performance. Along with other noteworthy research of
that period, Through the Looking Glass signaled a sea change of
thinking around in-memory operational systems.

Traditional DBMSs have five sources of processing overhead:

Index Management: B-tree, hash and other indexing schemes
require significant CPU and I/O.

Write-Ahead Logging: Traditional databases write everything
twice; once to the database and once to the log. Moreover, the
log must be forced to disk, to guarantee transaction durability.
Logging is, therefore, an expensive operation.

Locking: Before touching a record, a transaction must set a lock
on it in the lock table. This is an overhead-intensive operation.

Latching: Updates to shared data structures (B-trees, the lock
table, resource tables, etc.) must be done carefully in a multi-

General Purpose RDBMS Processing Profile
OLTP Through the Looking Glass, and What We Found There
Stavros Harizopoulos, Daniel Abadi, Samuel Madden, and Michael Stonebraker
ACM SIGMOD 2008.

20% 18%

10%

29%12%

11%

Index Management

Logging

Locking

Latching

Buffer Management

Useful Work

threaded environment. Typically, this is done with short-duration
latches, which are another considerable source of overhead.

Buffer Management: Data in traditional systems is stored on
fixed-size disk pages. A buffer pool manages which set of disk
pages is cached in memory at any given time. Moreover, records
must be located on pages and the field boundaries identified.
Again, these operations are overhead-intensive.

Designed originally for data integrity, this overhead prevents
traditional databases from scaling to meet contemporary data
volumes and workloads.

VoltDB Eliminates All of these
Legacy DBMS Overheads. With VoltDB:

Data and the processing associated with it are partitioned
together and distributed across the CPU cores (“virtual
nodes”) in a shared-nothing hardware cluster

Data is held in memory for maximum throughput and
eliminates the need for buffer management

Each single-threaded partition operates autonomously,
eliminating the need for locking and latching

Data is automatically replicated for intra- and inter-cluster
high availability

VoltDB Architecture
VoltDB leverages the following architectural elements to achieve
its performance, scaling and high availability objectives:

Automatic partitioning (sharding) across a
shared-nothing server cluster

Main-memory data architecture

Elimination of multi-threading and locking overhead

Automatic replication and command logging
for high availability and durability

Stored procedure interface for transactions

Automatic Partitioning Across
Shared-nothing ServeR Clusters

VoltDB embraces shared-nothing architecture. To achieve
database parallelism, data and the processing associated with
it (in the form of a single-threaded VoltDB execution “engine”)
are distributed among all the CPU cores within the servers
composing a single VoltDB cluster. By extending its shared-
nothing foundation to the per-core level (“virtual nodes”),
VoltDB exploits and scales with the increasing core-per-CPU
counts on modern commodity servers. This architecture also
allows VoltDB to run easily on virtualized and 		
cloud infrastructures.

3

Every VoltDB table is either:

•	 Partitioned across these virtual nodes, or

•	 Cloned at every virtual node

Partitioning is appropriate for large, frequently updated or
accessed tables while cloning of small read-almost-always
tables can significantly improve performance.

Main Memory Data Architecture
The size of databases is increasing at the rate that business
expands. For example, a purchase order database increases in
size at the rate that active purchase orders increase. In almost
all database applications, this rate is slower than the rate at
which main memory decreases in price. Therefore almost all
database applications are (or will soon be) candidates for main-
memory deployment. As such, VoltDB is a main memory DBMS.

In VoltDB, each partition is stored in main memory and
processed by its associated, single-threaded execution engine at
in-memory speed. In-memory processing eliminates disk waits
from within VoltDB transactions, along with the need for buffer
management overhead.

VoltDB can save data snapshots and command logs to disk for
backup purposes and recovery purposes and also spool data to a
data warehouse database for analysis and querying. This feature
is explained in more detail below.

Elimination of Multi-threading and
Locking Overhead
Conventional databases experience disk and user stalls within
transactions. Rather than letting the CPU be idle during the
stalls, those DBMSs interleave SQL execution from multiple
transactions during the waits so the CPU is always busy. This is
what requires much complex latching and locking overhead.

VoltDB doesn’t experience user stalls (since transactions
happen within stored procedures) or disk stalls (because
VoltDB processes data in main memory). Therefore, VoltDB is
able to eliminate the overhead associated with multi-threading
(latching) and locking. Each VoltDB execution engine is single-
threaded and contains a queue of transaction requests, which
it executes sequentially—and exclusively—against its data.
Elimination of stalls and associated locking and latching
overhead allows typical VoltDB SQL operations to complete
in microseconds.

For single-partition transactions, each VoltDB engine operates
autonomously. For multi-partition transactions, one engine
distributes and coordinates work plans for the other engines.
VoltDB assumes that an application designer can construct

a partitioning/cloning scheme and a transaction design that
makes a large majority of the transactions local to a single
virtual node. Many common applications such as telco billing,
personalization, game state, sensor management, and capital
market risk have this profile.

Automatic Replication and
Recovery for High Availability
VoltDB achieves high availability for 24x7x365 operations very
simply and economically through automatic intra-cluster and
inter-cluster replication. Data is synchronously committed
to replicated partitions within the cluster before transactions
commit. This provides durability against single-node failures.
To provide durability against cluster failures (e.g., in the event
of a data center catastrophe), transactions are asynchronously
committed to a replica cluster (usually in different
geographic locations).

VoltDB automatically guarantees that every replica, whether
in the same cluster or a different one, runs transactions in the
same order and thereby achieves the same global order.

VoltDB runs an active-active configuration. If a node failure
occurs, VoltDB automatically (and seamlessly) switches over to
a replica node. Hence, an application is unaware that a problem
occurred. Recovery is performed automatically; the recovered
node (or cluster) queries the running VoltDB cluster to recover
its data.

VoltDB implements a concept called command logging for
transaction-level durability. Unlike traditional write-ahead logs,
VoltDB logs the instantiation of commands to the database
rather than all resulting actions. This style of logging greatly
reduces the load on the disk system while providing either
synchronous or asynchronous logging for transaction-		
level durability.

InterfaceS for ACID Transactions

VoltDB exposes a stored procedure, ad hoc and JDBC interface.
With stored procedures, there is only a single round trip between
the client and the server per transaction. Hence, the run-time
interface to VoltDB is to execute a stored procedure, substituting
transaction-specific constants for parameters.

Stored procedures are written in Java, with embedded SQL calls
for database services. VoltDB supports a large subset of SQL-92,
including most SQL data types, along with filtering,
joins and aggregates.

4

VoltDB Versus Other DBMS
Alternatives

VoltDB isn’t the first attempt at overcoming the performance and
scalability limitations of traditional databases. Two alternatives
to VoltDB include running conventional databases in memory, or
using a “NoSQL” key-value store (KV store).

In-memory systems can safely remove the buffer management
and they often remove the logging (at the expense of durability).
Even with these systems removed, the maximum performance
improvement is roughly 2x. To achieve the 50x speedup of
VoltDB, all legacy OLTP time-syncs must be removed (buffer
management, logging, latching and locking).

In order to deliver better performance on scale-out hardware,
some databases, such as NoSQL KV stores, eliminate some
of this overhead — and SQL and data integrity along with it
(delivering “eventual consistency”). Unfortunately, since KV
stores don’t execute SQL, functionality that would normally
be executed by the database must be implemented in the
application layer.

The table below summarizes the differences between VoltDB,
NoSQL KV stores and traditional databases:

VoltDB and Data Warehousing
VoltDB is specially designed to handle large, fast-growing
volumes of operational database operations. As an in-memory
database, VoltDB is not well suited to the petabyte+ data
volumes increasingly found in data warehousing. However,
organizations often want to store and process the information
collected by VoltDB in a data warehouse database. Therefore,
VoltDB includes an export integration subsystem that spools
VoltDB data to analytic DBMS products (such as columnar data
stores and Hadoop) to enable deep reporting and analysis.

Summary

VoltDB leverages observations derived from industry-leading
expertise about OLTP workloads to achieve linear scaling as
nodes are added to a VoltDB cluster. This partitioning, across
multiple machines and multiple cores, is central to the design of
VoltDB; it mitigates the contention for resources that limit legacy
DBMS scalability. The main-memory storage of all data greatly
reduce network and disk latency. Combined, these departures
from the status quo allow VoltDB to offer the next generation
of DBMS scalability, performance and manageability liberating
organizations from expensive shared-memory, shared-disk
database systems that do not scale.

Next Steps
To learn more about VoltDB, visit www.voltdb.com. Product
documentation, developer support forums and an open source
version of VoltDB are freely available.

209 Burlington Road, Suite 203
Bedford, MA 01730

Phone: +1.978.528.4660
Fax: +1.978.528.0568

http://voltdb.com

